Penggunaan DTM Presisi dari Fotogrametri UAV untuk Analisa Bencana Longsor Menggunakan Sistem Informasi Geografis
Abstract
The morphologies of the Pandansari Village (Ngantang District, Malang Regency, Indonesia) are vulnerable to landslide disasters that may damage human properties, infrastructures, and even fatalities. Landslide disaster mitigation can be carried out by conducting disaster-prone mapping utilizing Unmanned Aerial Vehicle (UAV) photogrammetry along with geographic information systems (GIS) to produce precise Digital Elevation Model/Digital Terrain Model (DEM/DTM). The purpose of this study is to analyze areas prone to landslides using precision DTM data from UAV technology integrated with geospatial data. DEM is widely used for disaster mapping applications in the form of DTM, representing the ground surface. DTM can be generated from UAV images with photogrammetric processing and additional procedures for removing non-ground objects. This study utilizes PCI Geomatics software to remove vegetation and human-made objects off the ground surfaces semi-automatically. The evaluation revealed that LE 90% of the DTM has only deviated at approximately 0.81 m. This value follows the introductory map geometric accuracy provisions according to BIG No.15 of 2014 for a scale of 1:2500 in class 2. The landslide hazard map classifications using the landslide estimation Puslittanak are dominated by a high classification landslide hazard level with an area of 20.1 ha (48%). In addition, the validation of the landslide-prone map using the accuracy assessment method obtained a percentage of 83%.
Keywords
Full Text:
PDFReferences
Abdurrahman, A., Budipraja, M. A., Khoirullah, N., Helmi, F., & Sophian, R. I. (2020). Brief communication: rapid assessment of landslide events based on UAV photogrametry: The 9 January 2021 Cimanggung Landslide, Sumedang, Indonesia. Journal of Geological Sciences and Applied Geology, 4(2). 19–25.
Abidin, H. Z. (2000). Penentuan Posisi Dengan GPS dan Aplikasinya.
Afif, H. A., Saraswati, R., & Hernina, R. (2019). UAV application for landslide mapping in Kuningan Regency, West Java. In E3S Web of Conferences (Vol. 125, p. 03011). EDP Sciences. doi: 10.1051/e3sconf/201912503011.
Azeriansyah, R., Prasetyo, Y., & Yuwono, B. D. (2017). Analisis Identifikasi Dampak Bencana Tanah Longsor dengan Menggunakan Unmanned Aerial Vehicle (UAV) (Studi Kasus: Kelurahan Ngesrep, Kecamatan Banyumanik). Jurnal Geodesi Undip, 6(4), 474-484.
BIG (2020). Peraturan Badan Informasi Geospasial Republik Indonesia Nomor 1 Tahun 2020 Tentang Standar Pengumpulan Data Geospasial Dasar Untuk Pembuatan Peta Dasar Skala Besar. BIG, 53(9), 1689–1699.
Buchori, I., & Susilo, J. (2012). Model keruangan untuk identifikasi kawasan rawan longsor. Tataloka, 14(4), 282-294.
Chen, Z., Ye, F., Fu, W., Ke, Y., & Hong, H. (2020). The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China. Natural Hazards, 101(3), 853-877. https://Doi.Org/10.1007/S11069-020-03899-9
Chandler, C. C. (1989). Specific retroactive interference in modified recognition tests: Evidence for an unknown cause of interference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(2), 256–265. https://doi.org/10.1037/0278-7393.15.2.256
Cruden, D. M., & Varnes, D. J. (1996). Chapter 3 Landslide Types And Processes. Landslides: Investigation And Mitigation, Transportation Research Board Special Report 247, Washington D.C., Bell 1992, 36–75.
Du, Y., Wan, L., Li, X., Yan, G., Liu, S., Qi, S., & Lu, T. (2021). High-precision DEM extraction by region segmentation-based progressive triangulation encryption filtering. Arabian Journal of Geosciences, 14(6), 1-12. https://doi.org/10.1007/S12517-021-06635-0
Hasibuan, H. C., & Rahayu, S. (2017). Kesesuaian Lahan Permukiman pada Kawasan Rawan Bencana Tanah Longsor di Kabupaten Temanggung. Teknik PWK (Perencanaan Wilayah Kota), 6(4), 242-256.
Julzarika, A., & Sudarsono, B. (2009). Penurunan Model Permukaan Dijital (DSM) Menjadi Model Elevasi Dijital (DEM) dari Citra Satelit Alos Palsar (Studi Kasus: NAD Bagian Tenggara, Indonesia). Teknik, 30(1), 57-63.
Kerong, R. G. D., Tjahjadi, M. E., & Agustina, F. D. (2022). Kajian Perbandingan Akurasi DTM Pengolahan Data Foto Udara Menggunakan Metode Otomatis Dan Semi-Otomatis Filtering. Jambura Geoscience Review, 4(1), 69-85. https://doi.org/10.34312/jgeosrev.v4i1.12046
Mahmudi. (2015). Analisis Ketelitian DEM ASTER GDEM, SRTM, Dan Lidar Untuk Identifikasi Area Pertanian Tebu Berdasarkan Parameter Kelerengan (Studi Kasus: Distrik Tubang, Kabupaten Merauke, Provinsi Papua (Doctoral dissertation, Universitas Diponegoro).
National Park Service Vegetation Inventory (2011) “Vegetation Inventory Project.”
Pardo, C. N., Sabri, L., & Awwaluddin, M. (2019). Analisis Akurasi Model 3 Dimensi Bangunan Dari Foto Secara Tegak Dan Miring (Studi Kasus : Gedung Fakultas Kedokteran Universitas Diponegoro). Jurnal Geodesi UNDIP, 9(1), 354-363. Retrieved from https://ejournal3.undip.ac.id/index.php/geodesi/article/view/26181
Priyono. (2015). Hubungan Klasifikasi Longsor, Klasifikasi Tanah Rawan Longsor Dan Klasifikasi Tanah Pertanian Rawan Longsor. Gema, 27(49), 1602-1617.
Puslittanak, Pusat Penelitian dan Pengembangan Tanah dan Agroklimat (2004) “Laporan Akhir Pengkajian Potensi Bencana Kekeringan, Banjir dan Longsor di Kawasan Satuan Wilayah Sungai Citarum-Ciliwung, Jawa Barat Bagian Barat Berbasis Sistem Informasi Geografis.” Bogor.
Selaby, S., Kusratmoko, E., & Rustanto, A. (2021). Landslide Susceptibility in Majalengka Regency, West Java Province. In IOP Conference Series: Earth and Environmental Science 884(1), p. 012053. IOP Publishing. doi:10.1088/1755-1315/884/1/012053.
Shofiyanti, R. (2011). Teknologi pesawat tanpa awak untuk pemetaan dan pemantauan tanaman dan lahan pertanian. Informatika Pertanian, 20(2), 58-64.
Veihe, A. (2002). The spatial variability of erodibility and its relation to soil types: a study from northern Ghana. Geoderma, 106(1-2), 101-120.
DOI: https://doi.org/10.34312/jgeosrev.v4i2.12908
Copyright (c) 2022 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.