Contribution of Resistivity Properties in Estimating Hydraulic Conductivity in Ciremai Volcanic Deposits

Deden Zaenudin Mutaqin, Hendarmawan Hendarmawan, Agus Didit Haryanto, Undang Mardiana, Febriwan Mohammad

Abstract


The hydraulic parameters of porous media, such as porosity (φ) and hydraulic conductivity (K), are the most important factors for planning and managing water exploitation from aquifers. This study aims to estimate the hydraulic conductivity parameters using the geoelectric method on volcanic deposits on the northern slope of Mount Ciremai. For this purpose, four data types were used to estimate K and φ, including lithological profiles, water table, groundwater quality, pumping test data, and vertical electrical sounding (VES). Based on Archie's law and Kozeny's equation, we get the alpha (α) values and cementation factor (m) from which the median values of α = 1.01 and m = 1.36 represent the studied aquifer.  The porosity (φ) of the aquifer varies from 0.097 to 0.187 with an average of 0.141 and is spatially related to the hydraulic conductivity (kgm), which varies from 4.97 × 10-6 to 6.75 × 10-5 m/s after the application of Kozeny's equation. The hydraulic conductivity (Kp) calculated from the pumping tests varies from 9.07 × 10-6 to 1.06 × 10-4 m/s and is strongly correlated (r = 0.87). Furthermore, a relation between resistivity and hydraulic conductivity was established for the studied aquifer to estimate these parameters in sites lacking data.

Keywords


Hydraulic Conductivity; Resistivity; Pourus Aquifer; Volcano

Full Text:

PDF

References


Alfadli, M. K., & Natasia, N. (2017). Geoelectricity Data Analysis For Identification The Aquifer Configuration In Bandorasawetan, Cilimus, Kuningan, West Java Province. Journal of Geoscience, Engineering, Environment, and Technology, 2(4), 278. doi: 10.24273/jgeet.2017.2.4.779

Amiri, V., Sohrabi, N., Li, P., & Shukla, S. (2022). Estimation of hydraulic conductivity and porosity of a heterogeneous porous aquifer by combining transition probability geostatistical simulation, geophysical survey, and pumping test data. Environment, Development and Sustainability. doi: 10.1007/s10668-022-02368-6

Archie, G. E. (1942). The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME, 146(01), 54–62. doi: 10.2118/942054-G

Archie, G.E. (1950). Introduction to Petrophysics of Reservoir Rocks. AAPG Bulletin, 34. doi: 10.1306/3D933F62-16B1-11D7-8645000102C1865D

Cooper, H. H., & Jacob, C. E. (1946). A generalized graphical method for evaluating formation constants and summarizing well-field history. Transactions, American Geophysical Union, 27(4), 526. doi: 10.1029/TR027i004p00526

Darisma, D., Fernanda, F., & Syukri, M. (2020). Investigation of Groundwater Potential using Electrical Resistivity Method and Hydraulic Parameters in Lam Apeng, Aceh Besar, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 5(4), 211–218. doi: 10.25299/jgeet.2020.5.4.5501

Djuri. (1995). Peta Geologi Lembar Arjawinangun, Jawa Barat. Direktorat Geol. dan Pengemb. Geol. Dep. Pertamb. dan Energi Republik Indonesia.

Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (2nd ed). New York: Wiley.

Ezema, O. K., Ibuot, J. C., & Obiora, D. N. (2020). Geophysical investigation of aquifer repositories in Ibagwa Aka, Enugu State, Nigeria, using electrical resistivity method. Groundwater for Sustainable Development, 11, 100458. doi: 10.1016/j.gsd.2020.100458

Fetter, C. W. (1994). Applied Hydrogeology: MacMillan College Publishing Co. New York, NY, 691p.

Gao, Q., Shang, Y., Hasan, M., Jin, W., & Yang, P. (2018). Evaluation of a Weathered Rock Aquifer Using ERT Method in South Guangdong, China. Water, 10(3), 293. doi: 10.3390/w10030293

Hasan, M., Shang, Y., Akhter, G., & Jin, W. (2018). Geophysical Assessment of Groundwater Potential: A Case Study from Mian Channu Area, Pakistan. Groundwater, 56(5), 783–796. doi: 10.1111/gwat.12617

Hasan, M., Shang, Y., Jin, W., & Akhter, G. (2021). Estimation of hydraulic parameters in a hard rock aquifer using integrated surface geoelectrical method and pumping test data in southeast Guangdong, China. Geosciences Journal, 25(2), 223–242. doi: 10.1007/s12303-020-0018-7

Irawan, D. E., Puradimaja, D. J., Notosiswoyo, S., & Soemintadiredja, P. (2009). Hydrogeochemistry of volcanic hydrogeology based on cluster analysis of Mount Ciremai, West Java, Indonesia. Journal of Hydrology, 376(1–2), 221–234. doi: 10.1016/j.jhydrol.2009.07.033

Ismawan, Rahayudin, Y., CSSA, B.Y., Suganda, B.R., Barkah, N. (2013). Airtanah Pada Endapan Volkanik Di Lereng Tenggara.

IWACO – WASECO. (1989). Kuningan Regency Provincial Water Supply Report.

Kazakis, N., Vargemezis, G., & Voudouris, K. S. (2016). Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods. Science of The Total Environment, 550, 742–750. doi: 10.1016/j.scitotenv.2016.01.133

Kozeny, J. (Ed.). (1953). Hydraulik. Vienna: Springer Vienna. doi: 10.1007/978-3-7091-7592-7

Kwader, T. (1985). Estimating Aquifer Permeability from Formation Resistivity Factors.pdf. https://doi.org/10.1111/j.1745-6584.1985.tb01955.x

MacCary, L. M. (1978). Interpretation Of Well Logs In A Carbonate Aquifer. U.S. Geological Survey Open File Report 78-88, 30p.

Niwas, S., De Lima, O.A.L. (2003). Aquifer parameter estimation from surface resistivity data. Ground Water. https://doi.org/10.1111/j.1745-6584.2003.tb02572.x

Sattar, G. S., Keramat, M., & Shahid, S. (2016). Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh. Applied Water Science, 6(1), 35–45. doi: 10.1007/s13201-014-0203-9

Soupios, P. M., Kouli, M., Vallianatos, F., Vafidis, A., & Stavroulakis, G. (2007). Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete – Greece). Journal of Hydrology, 338(1–2), 122–131. doi: 10.1016/j.jhydrol.2007.02.028

Telford, W.M., Geldart, L.P., Sheriff, R.E. (1990). Applied Geophysics, Second Edition. Cambridge Univ. Press.

Theis, C. V. (1935). The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage. Transactions, American Geophysical Union, 16(2), 519. doi: 10.1029/TR016i002p00519

Tizro, A. T., Voudouris, K. S., Salehzade, M., & Mashayekhi, H. (2010). Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: A case study from West Iran. Hydrogeology Journal, 18(4), 917–929. doi: 10.1007/s10040-010-0580-6

Ungemach, P., Mostaghimi, F., & Duprat, A. (1969). Essais de détermination du coefficient d’emmagasinement en nappe libre application a la nappe alluviale du rhin. International Association Of Scientific Hydrology. Bulletin, 14(2), 169–190. Doi: 10.1080/02626666909493726

Winsauer, W. O., Shearin Jr, H. M., Masson, P. H., & Williams, M. (1952). Resistivity of brine-saturated sands in relation to pore geometry. AAPG bulletin, 36(2), 253-277. doi: 10.1306/3D9343F4-16B1-11D7-8645000102C1865D




DOI: https://doi.org/10.34312/jgeosrev.v5i1.17333



Copyright (c) 2023 Author

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.