Machine Learning XGBoost Method for Detecting Mangrove Cover Using Unmanned Aerial Vehicle Imagery
Abstract
The mangrove ecosystem can be understood as a unique and different type of ecosystem that can benefit the surrounding ecosystem from the socio-economic and ecological perspective. The purpose of this study is to classify mangrove cover in Tanjung Lapin Beach, about 18.3 hectares, North Rupat District Bengkalis Regency, Riau Province, by applying machine learning XGBoost methods of UAV images by producing interpretations of mangrove cover in the research area. The use of machine learning with a high level of accuracy resulting from the XGBoost method is expected to help the availability of spatial data in identifying better mangrove forest cover. The data obtained from the orthomosaic results from the 3,500 tiles image is used as a reference for making sample points for the analysis process using the XGBoost method, with 224 sample points of mangrove objects visually recognized as training data. Regarding training data, the XGBoost method's iteration result obtained 99% overall accuracy and Kappa accuracy of about 0.98. It means the analysis process continues to the mangrove object cover detection stage. Based on the detection results, it was obtained about 11.9 hectares of mangrove forest cover (64% of the total study area). It has 68 sample points as test data used as an accuracy test tool from the detection results of mangrove objects, where an overall accuracy of 87% and kappa accuracy of 0.82 were obtained. This shows the successful use of the XGBoost method in identifying the mangrove's cover.
Keywords
Full Text:
PDFReferences
Al-Mistarehi, B. W., Alomari, A. H., Imam, R., & Mashaqba, M. (2022). Using Machine Learning Models to Forecast Severity Level of Traffic Crashes by R Studio and ArcGIS. Frontiers in Built Environment, 8. https://doi.org/10.3389/fbuil.2022.860805
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. https://doi.org/10.1145/2939672.2939785
Fitriawan, D., Senov, H. T., & Permana, R. (2020). Pemanfaatan Teknologi Foto Udara Penginderaan Jauh Unmanned Aerial Vehicle (UAV) Untuk Pengumpulan Data Geospasial Di Area A Warisan Dunia Tambang Batubara Ombilin Sawahlunto (WTBOS). In Jurnal Azimut (Vol. 3, Issue 1). http://srgi.big.go.id/srgi2/jkg.
Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine 1. In The Annals of Statistics (Vol. 29, Issue 5).
Hafiz, G., Awaluddin, M., & Yuwono, D. (2014). Analisis Pengaruh Panjang Baseline Terhadap Ketelitian Pengukuran Situasi Dengan Menggunakan GNSS Metode RTK-NTRIP. In Jurnal Geodesi Undip Januari (Vol. 3, Issue 1).
Hengl, T., Leenaars, J. G. B., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B. M., Mamo, T., Tilahun, H., Berkhout, E., Cooper, M., Fegraus, E., Wheeler, I., & Kwabena, N. A. (2017). Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109(1), 77–102. https://doi.org/10.1007/s10705-017-9870-x
Hirayama, H., Sharma, R. C., Tomita, M., & Hara, K. (2019). Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images. International Journal of Remote Sensing, 40(7), 2542–2557. https://doi.org/10.1080/01431161.2018.1528400
Ilman, M., Dargusch, P., Dart, P., & Onrizal. (2016). A historical analysis of the drivers of loss and degradation of Indonesia's mangroves. Land Use Policy, 54, 448–459. https://doi.org/10.1016/j.landusepol.2016.03.010
Jiang, Y., Tong, G., Yin, H., & Xiong, N. (2019). A Pedestrian Detection Method Based on Genetic Algorithm for Optimize XGBoost Training Parameters. IEEE Access, 7, 118310–118321. https://doi.org/10.1109/ACCESS.2019.2936454
Knez, S., Šimić, G., Milovanović, A., Starikova, S., & Županič, F. Ž. (2022). Prices of conventional and renewable energy as determinants of sustainable and secure energy development: regression model analysis. Energy, Sustainability and Society, 12(1). https://doi.org/10.1186/s13705-022-00333-9
Kumar, B., Lohani, B., & Pandey, G. (2019). Development of deep learning architecture for automatic classification of outdoor mobile LiDAR data. International Journal of Remote Sensing, 40(9), 3543–3554. https://doi.org/10.1080/01431161.2018.1547929
Nababan, A. A., Jannah, M., Aulina, M., & Andrian, D. (2023). Prediksi Kualitas Udara Menggunakan Xgboost Dengan Synthetic Minority Oversampling Technique (Smote) Berdasarkan Indeks Standar Pencemaran Udara (ISPU). Jurnal Teknik Informatika Kaputama (JTIK), 7(1).
Nooni, I. K., Duker, A. A., Van Duren, I., Addae-Wireko, L., & Osei Jnr, E. M. (2014). Support vector machine to map oil palm in a heterogeneous environment. International Journal of Remote Sensing, 35(13), 4778–4794. https://doi.org/10.1080/01431161.2014.930201
Rahmat Maulana, I., Safe’i, R., Indra, D., Febryano, G., Kehutanan, J., Pertanian, F., Lampung, U., Sumantri Brojonegoro, J., Meneng, G., & Lampung, B. (2021). Penilaian Status Kesehatan Hutan Mangrove Di Desa Margasari Kecamatan Labuhan Maringgai Kabupaten Lampung Timur. In Hut Trop (Vol. 5, Issue 2).
Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 344–349. https://doi.org/10.1073/pnas.1510272113
Rosmasita, ., Siregar, V. P., & Agus, S. B. (2018). Klasifikasi Mangrove Berbasis Objek Dan Piksel Menggunakan Citra Sentinel-2b Di Sungai Liong, Bengkalis, Provinsi Riau. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 10(3), 601–615. https://doi.org/10.29244/jitkt.v10i3.22182
Safrel, I., Julianto, E. N., & Usman, N. Q. (2018). Accuracy Comparison between GPS Real Time Kinematic (RTK) Method and Total Station to Determine The Coordinate of An Area. Jurnal Teknik Sipil Dan Perencanaan, 20(2), 123–130. https://doi.org/10.15294/jtsp.v20i2.16284
Schaduw, J. N. W. (2019). Struktur Komunitas Dan Persentase Penutupan Kanopi Mangrove Pulau Salawati Kabupaten Kepulauan Raja Ampat Provinsi Papua Barat. Majalah Geografi Indonesia, 33(1), 26. https://doi.org/10.22146/mgi.34745
Siringoringo, R., Perangin Angin, R., & Rumahorbo, B. (2022). Model Klasifikasi Genetic-Xgboost Dengan T-Distributed Stochastic Neighbor Embedding Pada Peramalan Pasar: Vol. XI (Issue 1). https://archive.ics.uci.edu/ml/datasets/online+retail
Syukron, M., Santoso, R., & Widiharih, T. (2020). Perbandingan Metode Smote Random Forest Dan Smote Xgboost Untuk Klasifikasi Tingkat Penyakit Hepatitis C Pada Imbalance Class Data. Jurnal Gaussian, Volume 9(Nomor 3), 227–236. https://ejournal3.undip.ac.id/index.php/gaussian/
Timisela, W. A., Mardiatmoko, G., & Puturuhu, F. (2020). Analisa Jenis Mangrove Menggunakan Citra Uav Dengan Klasifikasi Obia. Jurnal Hutan Pulau-Pulau Kecil, 4(2), 132–149. https://doi.org/10.30598/jhppk.2020.4.2.132
Xu, H. W., Qin, W., & Sun, Y. N. (2022). An Improved XGBoost Prediction Model for Multi-Batch Wafer Yield in Semiconductor Manufacturing. IFAC-PapersOnLine, 55(10), 2162–2166. https://doi.org/10.1016/j.ifacol.2022.10.028
Zhao, D., Zhen, J., Zhang, Y., Miao, J., Shen, Z., Jiang, X., Wang, J., Jiang, J., Tang, Y., & Wu, G. (2022). Mapping mangrove leaf area index (LAI) by combining remote sensing images with PROSAIL-D and XGBoost methods. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.315
DOI: https://doi.org/10.34312/jgeosrev.v5i2.20782
Copyright (c) 2023 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.