Delineation of Nickel Laterite Deposits in “DCV” Block Southeast Sulawesi Based on Data Analysis of Ground Penetrating Radar (GPR) Method

Y Yatini, Chrismast Getsimany

Abstract


The need for nickel is very intensive in the development of upstream to downstream industries so that domestic consumption of nickel ore will increase in the coming years, therefore domestic downstream is increasingly being improved. Overcoming the problem of the high demand for nickel in Indonesia can be done by conducting exploration and exploitation to support the downstream of nickel. Exploration of nickel laterite can be accomplished with geophysical methods that aim to obtain subsurface data from nickel laterite deposits. The Ground Penetrating Radar (GPR) geophysical method is one of the non-destructive methods that can be applied to determine the subsurface conditions of nickel laterite deposits based on physical properties in the form of dielectric constants and reflection patterns and amplitude contrasts produced on radargrams. The nickel laterite deposits can be separated into 4 layers based on Ground Penetrating Radar (GPR) data analysis: bedrock, saprolite, limonite, and topsoil. Based on GPR measurements, the average dielectric constant value of topsoil is 6.8 mS/m, the limonite layer is 10.87 mS/m, the saprolite layer is 12.37 mS/m, and bedrock is 7.87 mS/m. It can be seen that the saprolite layer has a high conductivity so that the dielectric constant value is also high, this is influenced by the very high nickel content in this layer. The depth of bedrock in the research area varies from 20 - 40 meters, the thickness of topsoil is dominated in the value range of 3.6 - 5 meters, while the thickness of the laterite layer which is the main target of nickel laterite mining includes saprolite and limonite layers which have varying values of 15 - 40 meters where the distribution of the thickness of this layer is in the eastern and central parts of the research area.


Keywords


Dielectric Constant, Ground Penetrating Radar, Laterite, Nickel, Southeast Sulawesi

Full Text:

PDF

References


Burger, P. A. 1996. Origins and Characteristics of Lateritic Deposits. Proceeding Nickel’96 The Australian Institute Of Mining And Metallurgy. Melbourne, 179-183.

Chen, Q., Sidney, S. 1997. Seismic Attribute echnologyfor Reservoir Forecasting and Monitoring,. The Leading Edge 16, N03, 247.

Francke, Jan C and David C Nobes. 2000. A Preliminary Evaluation of GPR for Nickel Laterit Exploration. SPIE – The International Society for Optical Engineering.

Heteren, V.S., Fitzgerald, D.M., McKinlay, P.A., and Buynevich, I.V. 1998. Radar Facies of Paraglacial Barrier System. Coastal New England, USA. Sedimentology.

Isjudiarto, A. 2013. Pengaruh Morfologi Lokal Terhadap Pembentukan Nikel Laterit.Seminar Nasional ke 8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi, 10-14.

Jufri, Nur hikmah, Lantu, Muh. Altin Massinai. 2015. Aplikasi Metode Ground Penetrating Radar (GPR) Untuk Identifikasi Seam Batubara. Program studi Geofisika, Jurusan Fisika, Fakultas Matematika dan ilmu pengetahuan Alam Universitas Hasanuddin : Makassar.

Kementrian ESDM. 2020. Booklet Peluang Investasi Nikel Indonesia. Online: http://www.esdm.go.id/id/booklet/booklet-tambang-nikel-2020.

Knight, R. 2001. Ground Penetrating Radar for Environment Application. Annu. Rev. Earth Planet. Sci, Vol. 29, pp. 229-55.

Musset, Alan E., and Khan, M. Aftab. 1993. Looking Into the Earth. Cambridge University Press, New York. pp. 227-230.

Neal, A. 2004. Ground-Penetrating Radar and its use in sedimentologi : principles, problems, and progress. Earth Science Reviews 66, 261 – 330.

Oktafiani, Folin dkk. 2017. Sistem Ground Penetrating Radar untuk Mendeteksi Benda-benda di Bawah Permukaan Tanah. Online: https://media.neliti.com/media/publications/66785-ID-sistem-ground-penetrating-radar-untuk-me.pdf.

Rohmah, D. A. 2019. Analisa Sistem Penyangga Batuan Tambang Bawah Tanah Berdasarkan Metode Ground Penetrating Radar (GPR) Frekuensi Tinggi Pada Tambang Bawah Tanah PT. Freeport Indonesia. Skripsi sarjana, UPN “Veteran” Yogyakarta.

Rusmana, E., Sukido, Sukarna, D., Haryono, E., dan Simandjuntak, T.O., 1993b. Peta Geologi Lembar Lasusua-Kendari, Sulawesi, skala 1 : 250.000 . Pusat Penelitian dan Pengembangan Geologi.

Salinita, Silti dan Agus Nugroho. 2014. Pemodelan Bijih Nikel Laterit Untuk Esitmasi Cadangan Pada PT. Anugerah Tompira Nikel di Daerah Masama, Kabupaten Banggai. Jurnal Teknologi Mineral dan Batubara, 10(2), 54-68.

Sukaesih. 2015. Atlas Mineral dan Batuan Endapan Nikel ESDM. Online: http://psdg.bgl.esdm.go.id/kolokium/2015/sart ek/1.pdf.

Surono. 2013. Geologi Lengan Tenggara Sulawesi. Badan Geologi, Kementerian Energi Badan Geologi, Kementerian Energi dan Sumber Daya Mineral dan Sumber Daya Mineral.

Takahashi, et al. 2013. Influence of Soil Properties on the Performance of Metal Detectors and GPR. The Journal of ERW and Mine Action, Spring 2013, 17.1.

Wibowo, Aditya Rizky dan Bagaskara Wahyu P. 2021. Nikel, Kegunaan dan Potensi nya di Bumi Pertiwi. Online: https://fgmi.iagi.or.id/berita/berita-dunia-geosaintis/nikel-kegunaan-dan-potensi-nya-di-bumi-pertiwi/.




DOI: https://doi.org/10.37905/jgeosrev.v6i1.21119



Copyright (c) 2024 Y Yatini, Chrismast Getsimany

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor