Clay Mineral Identification for the Utilization of the Brick Industry in Samarinda using X-Ray Diffraction (XRD) Analysis

Ni'matul Azizah Raharjanti, Wisnu Ismunandar, Syamsidar Sutan, Muhammad Wira Andhika, Muhammad Haykal Bayu Priatama

Abstract


The clay minerals occurrences can be utilized into various products, including bricks. Brick industry often used the materials taken from the local area. The objective of the research is to identify the lithology of the brick material as well as the mineral consist in the soil or material, including clay mineral. The analysis is carried out in field observation and X-Ray Diffraction (XRD) analysis. The analysis resulting the lithology of the research area is predominantly sandstone and the bricks material is taken from the clayey soil part of from the quartz sandstone lithology. The quartz sandstone predominantly composed by quartz (97%) and plagioclase as minor mineral (3%). The analysis of the clay soil sample in quartz sandstone layer which used as the main component of the brick showing that the minerals composition are mainly quartz (95%) and plagioclase as minor mineral (3%), while the clay mineral that detected is kaolinite (2%). The formation of the kaolinite is interpreted as the result of the weathering of plagioclase trough hydrolysis process. From those data, it is identified that the brick in the research area mainly composed by quartz and clay mineral as kaolinite is formed in just minor abundance.


Keywords


Brick; Clay Mineral; Quartz; X-Ray Diffraction; Sandstone

Full Text:

PDF

References


Bergaya, F. (Ed.). (2008). Handbook of clay science (1. ed., reprint). Amsterdam Heidelberg: Elsevier.

Chambers, J. L. C., Craig, J., Carter, I., Moss, S. J., Cloke, I. R., & Paterson, D. W. (2004). Thin-skinned and Thick-skinned Inversion-Related Thrusting—A Structural Model for the Kutai Basin, Kalimantan, Indonesia. In K. R. McClay (Ed.), Thrust Tectonics and Hydrocarbon Systems (Vol. 82, p. 0). American Association of Petroleum Geologists. doi: 10.1306/M82813C32

Danish, A., Totiç, E., Bayram, M., Sütçü, M., Gencel, O., Erdoğmuş, E., & Ozbakkaloglu, T. (2022). Assessment of Mineralogical Characteristics of Clays and the Effect of Waste Materials on Their Index Properties for the Production of Bricks. Materials, 15(24), 8908. doi: 10.3390/ma15248908

Evans, A. M. (1993). Ore Geology and Industrial Minerals An Introduction (3. Auflage). New York, NY: John Wiley & Sons.

Gonggo, S. T., & Edyanti, F. (2013). Karakterisasi Fisikokimia Mineral Lempung Sebagai Bahan Dasar Industri Keramik di Desa Lembah Bomban Kecamatan Bolano Lambunu Kabupaten Parigi Moutong. Jurnal Akademika Kimia, 2(2), 105–113.

Guggenheim, S. (1995). Definition of Clay and Clay Mineral: Joint Report of the AIPEA Nomenclature and CMS Nomenclature Committees. Clays and Clay Minerals, 43(2), 255–256. doi: 10.1346/CCMN.1995.0430213

Kogel, J. E. (2009). Industrial minerals & rocks: Commodities, markets, and uses (7th ed.). Littleton, Colo.: Society for Mining, Metallurgy, and Exploration.

Manning, D. A. C. (2022). Mineral stabilities in soils: How minerals can feed the world and mitigate climate change. Clay Minerals, 57(1), 31–40. doi: 10.1180/clm.2022.17

Marshall, N., Novak, V., Cibaj, I., Krijgsman, W., Renema, W., Young, J., … Morley, R. (2015). DATING BORNEO’S DELTAIC DELUGE: MIDDLE MIOCENE PROGRADATION OF THE MAHAKAM DELTA. PALAIOS, 30(1), 7–25. doi: 10.2110/palo.2013.066

Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals (2nd ed). Oxford ; New York: Oxford University Press.

Murray, H. H. (2007). Applied clay mineralogy: Occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays (1st ed). Amsterdam ; Boston: Elsevier.

Nur, I. (2020). Peningkatan Mutu Tanah Liat Sebagai Bahan Baku Pembuatan Batu Bata di Kelurahan Bukaka, Kabupaten Bone, Sulawesi Selatan. JURNAL TEPAT : Applied Technology Journal for Community Engagement and Services, 3(2), 135–146. doi: 10.25042/jurnal_tepat.v3i2.149

Permana, A. K., Kusworo, A., Wahyudiono, J., A. Sendjaja, Y., Panggabean, H., & Fauziely, L. (2022). Chemostratigraphy and Paleoenvironment of the Miocene Organic Rich Sediments in the East Kutai Sub-Basin, Indonesia. Jurnal Geologi Dan Sumberdaya Mineral, 23(1), 1–15. doi: 10.33332/jgsm.geologi.v23i1.660

Pettijohn, F. J. (1975). Sedimentary rocks (3d ed). New York: Harper & Row.

Rahmi, A., & Syarief, A. (2014). UJI KUALITAS TANAH LEMPUNG DAN BATU BATA MERAH GAREGEH BUKITTINGGI. Jurnal Riset Fisika Edukasi Dan Sains, 1(1). doi: 10.22202/jrfes.2014.v1i1.1183

Supriatna, S., Sukardi, S., & Rustandi, E. (1995). Peta Geologi Lembar Samarinda Kalimantan Skala 1:250000. Bandung: Badan Geologi.

Winarno, A., Hendra Amijaya, D., & Harijoko, A. (2019). Mineral and Geochemistry Study of Lower Kutai Basin Coal East Kalimantan. IOP Conference Series: Earth and Environmental Science, 375(1), 012009. doi: 10.1088/1755-1315/375/1/012009

Winarno, T., Kurniasih, A., Marin, J., & Kusuma, A. I. (2018). Identifikasi Jenis dan Karakteristik Lempung di Perbukitan Jiwo, Bayat, Klaten dan Arahannya sebagai Bahan Galian Industri. Teknik, 38(2), 65. doi: 10.14710/teknik.v38i2.12942

Witts, D., Davies, L., Morley, R. J., & Anderson, L. (2016). Neogene Deformation of East Kalimantan:A Regional Perspective. Proc. Indonesian Petrol. Assoc., 39th Ann. Conv. Presented at the Thirty-Ninth Annual Convention. Indonesian Petroleum Association (IPA). doi: 10.29118/IPA.0.15.G.246




DOI: https://doi.org/10.37905/jgeosrev.v6i2.21524



Copyright (c) 2024 Ni'matul Azizah Raharjanti, Wisnu Ismunandar, Syamsidar Sutan, Muhammad Wira Andhika, Muhammad Haykal Bayu Priatama

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

slot online slot gacor slot