The Influence of Hydrogeological Conditions on Salt Quality Standards In Ambal District, Kebumen Regency, Central Java

Daniel Radityo, Septyo Uji Pratomo


Salt (NaCl), also known as halite, has a vital role as an essential ingredient in human life and industry. Kebumen Regency in Central Java, especially along the south coast in Ambal District, is one of the area in Indonesia that produces salt, originating from elongated dome-shaped salt ponds, which are the primary source of salt production in the region. Salt quality standards are regulated by SNI 3556:2016, which provides limits for metal contamination such as cadmium (Cd) <0.5 mg/kg, lead (Pb) <10 mg/kg, mercury (Hg) <0.1 mg/kg, and arsenic (As) <0.1 mg/kg. The conditions of seawater and groundwater used in the salt production process have a significant impact on the quality of the salt produced, which can be determined from hydrogeological studies. The results of measuring residents' wells at 43 points show that the depth of the groundwater level ranges from 4.4 to 14.75 meter below sea level. The results of salt analysis from 2 different salt ponds showed Cd levels ranging between 0.0949—0.1001 mg/kg, Pb between 0.5163—0,755 mg/kg, Hg between 0.01198—0.06203 mg/kg, and negative As levels; with water content ranging from 14.43-14.92% w/w and NaCl content between 72.3-85.8%. The analysis of well water and seawater from 3 samples showed Cd <0.0009 mg/kg, Pb <0.0011-0.0098 mg/kg, Hg <0.0001 mg/kg, and As <0.001 mg/kg. The results of groundwater level mapping show that hydrogeological conditions influence the quality standards for salt on the southern coast of Kebumen, especially by the significant grain size factor that carries groundwater and the elements dissolved in it. Meanwhile, salt produced from 2 salt ponds in Ambal District did not meets quality standards based on SNI 3556:2016.


hydrogeology, salt quality standards, Ambal, Kebumen

Full Text:



Amah, E.A., & Agbebia, M.A. (2015). Determination of Groundwater Flow Direction In Ekintae Limestone Quarry Near Mfamosing South-Eastern, Nigeria. International Journal of Geology, Agriculture and Environmental Sciences, 6(3), 1–5.

Asikin, S., Handoyo, A., Busono, H., dan Gafoer, S. (1992). Peta Geologi Lembar Kebumen, Jawa Tengah. Pusat Penelitian dan Pengembangan Geologi, Bandung.

Hakim, N., Nyakpa, M.Y., Lubis, A.M., Nugroho, S.G., Diha, M.A., Hong, G.B.,Bailey, H.H. (1986). Dasar-Dasar Ilmu Tanah. Lampung: Universitas Lampung Press.

Kraklik, M. (1998). A Rapid Procedure For Environmental Sampling And Evaluation Of Polluted Sediments.Applied Geochemistry, Vol 14: 807-816.

Lowenstein, T. K. and Hardie, L. A. (1985). Criteria for the recognition of salt‐pan evaporites. Sedimentology, 32(5), 627-644.

Li, W., Wang, J., Zhou, C., Yang, Y., Liu, R., Yang, Z., … & Yang, D. (2019). Numerical simulation study on salt release across the sediment–water interface at low-permeability area. Water, 11(12), 2503.

Maslukah, L. (2013). Hubungan antara Konsentrasi Logam Berat Pb, Cd, Cu, Zn dengan Bahan Organik dan Ukuran Butir dalam Sedimen di Estuari Banjir Kanal Barat, Semarang. Buletin Oseanografi Marina, Vol. 2; 55 –62.

Nawab, J., Khan, S., Shah, M., Khan, K., Huang, Q., & Ali, R. (2015). Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. International Journal of Phytoremediation, 17(9), 801-813.

Ridha, M., Ernawati, R., dan Cahyadi, T.A. (2019). Jejak dan Faktor Pengontrol Keterdapatan Logam Berat (Heavymetal) di dalam Sedimen. Prosiding Nasional Rekayasa Teknologi Industri dan Informasi XIV Tahun 2019 (ReTII), November 2019, pp. 78~83.

Roussiez, V., Ludwig, W., Probst, J.L., and Moncao, A. (2005). Background levels of Heavymetals in surficial sediments of the Gulf of Lions (NW Mediterranean): An approach based on 133Cs normalization and lead isotope measurements. Journal Enviromental Pollution, Vol 138:167-177.

Saldanela, Sutikno, S., and Hendri, A. (2015). Pemetaan Pola Aliran Air Tanah Berbasis Sistem Informasi Geografis (SIG) di Kawasan Kecamatan Tampan Kota Pekanbaru. JOM FTeknik, 2(1), 1–8.

Soniari, N.N. (2016). Korelasi Fraksi Partikel Tanah dengan Kadar Air Tanah, Erodibilitas Tanah Dan Kapasitas Tukar Kation Tanah Pada Beberapa Contoh Tanah di Bali. Undergraduated Thesis, Agriculture Faculty of Udayana University.

Standar Nasional Indonesia / Indonesian National Standard (SNI) no.3556:2016. (2016). Syarat Mutu Garam Konsumsi Beryodium.

Talabi, A. (2022). Groundwater distribution in urban settlement. International Journal of Current Science Research and Review, 05(10).

Wang, W., Wang, W., Yang, Y., Hou, Y., Zhang, S., & Zhu, Z. (2022). Assessing the influences of land use change on groundwater hydrochemistry in an oasis-desert region of central asia. Water, 14(4), 651.

Wen, X., Lü, J., Wu, J., Lin, Y., & Luo, Y. (2019). Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Science of the Total Environment, 652, 267-277.


Copyright (c) 2024 Daniel Radityo, Septyo Uji Pratomo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.