Mengungkap Aktivitas Antikanker Senyawa Dihidrokaempferida secara In Silico

Arif Fadlan, Tri Warsito, Sarmoko Sarmoko


This study aims to perform molecular docking of dihydrokaempferide and to predict the ADMET profiles of dihydrokaempferide. The molecular docking was conducted on DAPK1 macromolecules (5AUX and 5AV3) by preparation of dihydrokaempferide, preparation of DAPK1, docking simulation of dihydrokaempferide, visualization of docking results, and ADMET analysis. The molecular docking of dihydrokaempferide produced a binding affinity value of -6.9 kcal/mol for 5AUX and of -5.7 kcal/mol for 5AV3. The ADMET prediction indicated dihydrokaempferide had good physicochemical properties according to the criteria of absorption, distribution, metabolism, excretion, and toxicity.


anticancer; dihydrokaempferide; molecular docking; ADMET

Full Text:



Allen, W. J., & Rizzo, R. C. (2014). Implementation of The Hungarian Algorithm to Account for Ligand Symmetry and Similarity in Structure-based Design. Journal of Chemical Information and Modeling, 54(2), 518–529.

Alsanosi, S., Skiffington, C., & Padmanabhan, S. (2014). Pharmacokinetic Pharmacogenomics. Handbook of Pharmacogenomics and Stratified Medicine, 341-364.

Berman, H., Henrick, K., Nakamura, H., & Markley, J. L. (2007). The Worldwide Protein Data Bank (wwPDB): Ensuring A Single, Uniform Archive of PDB data. Nucleic Acids Research, 35(SUPPL. 1), 2006–2008.

Cole, J. C., Nissink, J. W. M., & Taylor, R. (2005). Protein-ligand Docking and Virtual Screening with GOLD. Virtual Screening in Drug Discovery, 379–415.

Dallakyan, S., & Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx, in Chemical Biology: Methods in Molecular Biology, vol. 1263, J. E. Hempel, C. H. Williams, and C. C. Hong, Eds. New York, NY: Springer New York, 243–250.

Drie, J. H. (2005). Pharmacophore-Based Virtual Screening: A Partical Prespective. in Virtual Screening in Drug Discovery, J. Alvarez & B. Shoichet, Eds. Boca Raton: CRC Press.

Ganesan, M. S., Raja, K. K., Murugesan, S., Kumar, B. K., Rajagopal, G., & Thirunavukkarasu, S. (2020). Synthesis, Biological Evaluation, Molecular Docking, Molecular Dynamics and DFT Studies of Quinoline-fluoroproline Amide Hybrids. Journal of Molecular Structure, 1217, 128360.

Jász, Á., Rák, Á., Ladjánszki, I., & Cserey, G. (2019). Optimized GPU Implementation of Merck Molecular Force Field and Universal Force Field. Journal of Molecular Structure, 1188, 227–233.

Jofily, P., Pascutti, P. G., & Torres, P. H. M. (2021). Improving Blind Docking in DOCK6 through an Automated Preliminary Fragment Probing Strategy. Molecules, 26(1224), 1–14.

Kannaiyan, R., & Mahadevan, D. (2018). A Comprehensive Review of Protein Kinase Inhibitors for cancer Therapy. Expert Review of Anticancer Therapy, 18(12), 1249-1270.

Kapoor, B., Gulati, M., Gupta, R., Singh, S., Gupta, M., Nabi, A., & Pooja, C. (2021). A Review on Plant Flavonoids as Potential Anticancer Agents. Current Organic Chemistry, 25(6), 737-747.

Mahringer, A., Puris, E., & Fricker, G. (2021). Crossing The Blood-brain Barrier: A Review on Drug Delivery Strategies Using Colloidal Carrier Systems. Neurochemistry International, 147, 105017.

Maia, E. H. B., Assis, L. C., de Oliveira, T. A., da Silva, A. M., & Taranto, A. G. (2020). Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Frontiers in Chemistry, 8, 343.

Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-based Drug Discovery. Current Computer Aided Drug Design, 7(2), 146–157.

Mirzaei, H., Zarbafian, S., Villar, E., Mottarella, S., Beglov, D., Vajda, S., Paschalidis, I. C., Vakili, P., & Kozakov, D. (2015). Energy Minimization on Manifolds for Docking Flexible Molecules. Journal of Chemical Theory and Computation, 11(3), 1063–1076.

Nauli, T. (2014). Penentuan Sisi Aktif Selulase Aspergillus Niger dengan Docking Ligan. Jurnal Kimia Terapan Indonesia, 16(2), 94-100.

Safe, S., Jayaraman, A., Chapkin, R. S., Howard, M., Mohankumar, K., & Shrestha, R. (2021). Flavonoids: Structure-function and Mechanism of Action and Opportunities for Drug Development. Toxicological Research, 37, 147-162.

Salahudeen, M. S., & Nishtala, P. S. (2017). An Overview of Pharmacodynamic Modelling, Ligand-binding Approach and Its Application in Clinical Practice. Saudi Pharmaceutical Journal, 25(2), 165–175.

Suenaga, M., Schirripa, M., Cao, S., Zhang, W., Yang, D., Dadduzio, V., Salvatore, L., Borelli, B., Pietrantonio, F., Ning, Y., Okazaki, S., Berger, M. D., Miyamoto, Y., Jr R. G., Barzi, A., Yamaguchi, T., Loupakis, F., & Lenz, H. J. (2017). Potential Role of Polymorphisms in The Transporter Genes ENT1 and MATE1/OCT2 in Predicting TAS-102 Efficacy and Toxicity in Patients with Refractory Metastatic Colorectal Cancer. European Journal of Cancer, 86, 197–206.

Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving The Speed and Accuracy of Docking with A New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31(2), 455–461.

Wang, T. Y., Li, Q., & Bi, K. S. (2018). Bioactive Flavonoids in Medicinal Plants: Structure, Activity and Biological Fate. Asian Journal of Pharmaceutical Sciences, 13(1), 12–23.

Wittwer, M. B., Zur, A. A., Khuri, N., Kido, Y., Kosaka, A., Zhang, X., Morrissey, K. M., Sali, A., Huang, Y., & Giacomini, K. M. (2013). Discovery of Potent, Selective Multidrug and Toxin Extrusion Transporter 1 (MATE1, SLC47A1) Inhibitors Through Prescription Drug Profiling and Computational Modeling. Journal of Medicinal Chemistry, 56(3), 781–795.

Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). AdmetSAR 2.0: Web-service for Prediction and Optimization of Chemical ADMET Properties. Bioinformatics, 35(6), 1067-1069.

Yokoyama, T., Kosaka, Y., & Mizuguchi, M. (2015). Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids. Journal of Medicinal Chemistry, 58(18), 7400–7408.

Zanger, U., & Schwab, M. (2013). Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacology & Therapeutics, 138(1), 103-141.

Zhao, L., Yuan, X., Wang, J., Feng, Y., Ji, F., Li, Z., & Bian, J. (2019). A Review on Flavones Targeting Serine/Threonine Protein Kinases for Potential Anticancer Drugs. Bioorganic & Medicinal Chemistry, 27(5), 677–685.



  • There are currently no refbacks.

Copyright (c) 2022 Jambura Journal of Chemistry


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.