Kajian HKSA Antimalaria Senyawa Turunan Quinolon-4(1H)-imines Menggunakan Metode MLR-ANN

Jafar La Kilo, Akram La Kilo


Quantitatif Structure-Activity Relationship (QSAR) study of 22 antimalarial compounds of Quinolon-4(1H)-imines derivatives has been done using multilinear regression (MLR) and artificial neural network (ANN) methods. The best QSAR model was obtained from ANN analysis indicated by its higher correlation coefficient (r2) compared to MLR method, i.e. 0.931 with most influential descriptors is qC1, qC5, qC11, qN14 and log P.

Keywords: Quinolon-4(1H)-imines, Antimalarial, QSAR, MLR-ANN

Telah dilakukan kajian analisis Hubungan Kuantitatif Struktur Aktivitas (HKSA) terhadap 22 senyawa antimalaria turunan Quinolon-4(1H)-imines menggunakan metode regresi multilinear (MLR) dan artificial neural network (ANN). Model HKSA terbaik diperoleh dari hasil analisis menggunakan metode ANN yang ditunjukkan oleh nilai koefisien korelasi (r2) paling tinggi dibandingkan dengan metode MLR yaitu sebesar 0,931 dengan deskriptor paling berpengaruh terhadap aktivitas antimalaria turunan Quinolon-4(1H)-imines, yaitu qC1, qC5, qC11, qN14 dan log P.

Kata Kunci: Quinolon-4(1H)-imines, Antimalaria, HKSA, MLR-ANN


Quinolon-4(1H)-imines, Antimalarial, QSAR, MLR-ANN

Full Text:



Dondorp, A., Phyo, A. P., Tarning, J., Ph, D., Lwin, K. M., Ariey, F., White, N. J. (2009). Artemisinin Resistance in Plasmodium falciparum Malaria. The NEW ENGLAND JOURNAL of MEDICINE, 361;5(July 30, 2009), 455467.

Frimayanti, N., Yam, M. L., Lee, H. B., & Othman, R. (2011). Validation of Quantitative Structure-Activity Relationship (QSAR) Model for Photosensitizer Activity Prediction. International Journal of Molecular Sciences, 12, 86268644. https://doi.org/10.3390/ijms12128626

Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y., & Lee, K. (2003). Rational selection of training and test sets for the development of validated QSAR models. Journal of Computer-Aided Molecular Design, 17, 241253.

Goodarzi, M., Freitas, M. P., & Ghasemi, N. (2010). European Journal of Medicinal Chemistry Original article QSAR studies of bioactivities of 1- ( azacyclyl ) -3-arylsulfonyl-1 H -pyrrolo [ 2 , 3- b ] pyridines as 5-HT 6 receptor ligands using physicochemical descriptors and MLR and ANN-modeling. European Journal of Medicinal Chemistry, 45(9), 39113915. https://doi.org/10.1016/j.ejmech.2010.05.045

Habibi-Yangjeh, A., Danandeh-Jenagharad, M., & Nooshyar, M. (2006). Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR, 338347. https://doi.org/10.1007/s00894-005-0050-6

Kaur, K., Jain, M., Reddy, R. P., & Jain, R. (2010). Quinolines and Structurally Related Heterocycles as Antimalarials. European Journal of Medicinal Chemistry, 45(8), 32453264. https://doi.org/10.1016/j.ejmech.2010.04.011

Larif, M., Adad, A., Hmammouchi, R., Taghki, A. I., Soulaymani, A., Elmidaoui, A., Lakhlifi, T. (2013). Biological activities of triazine derivatives. Combining DFT and QSAR results. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2012.12.033

Mishra, M., Mishra, V. K., Senger, P., Pathak, A. K., & Kashaw, S. K. (2013). Exploring QSAR studies on 4-substituted quinazoline derivatives as antimalarial compounds for the development of predictive models. Medicinal Chemistry Research. https://doi.org/10.1007/s00044-013-0744-8

Motta, L. F., & Almeida, W. P. (2011). Quantitative Structure-Activity Relationships ( QSAR ) of A Series of Ketone Derivatives as Anti-Candida Albicans. International Journal of Drug Discovery, 3(2), 100117.

Ressurreio, A. S., Gonalves, D., Sitoe, A. R., Albuquerque, I. S., Gut, J., Gis, A., Moreira, R. (n.d.). Structural Optimization of Quinolon-4 ( 1 H ) -imines as Dual-Stage Antimalarials : Toward Increased Potency and Metabolic Stability, 4, 111.

Su, Q., & Zhou, L. (2006). QSAR modeling of AT1 receptor antagonists using ANN, 869875. https://doi.org/10.1007/s00894-006-0105-3

Ventura, C., Latino, D. A. R. S., & Martins, F. (2013). European Journal of Medicinal Chemistry Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds. European Journal of Medicinal Chemistry, 70, 831845. https://doi.org/10.1016/j.ejmech.2013.10.029

Verma, R. P., & Hansch, C. (2009). Camptothecins: a SAR/QSAR study. Chemical Reviews, 109(1), 21335. https://doi.org/10.1021/cr0780210

WHO. (2013). World Malaria Report 2013.

DOI: https://doi.org/10.34312/jambchem.v1i1.2104


  • There are currently no refbacks.

Copyright (c)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.