The Relationship between Stability and Ion Conduction of Trivalent Cation Doped Ceria

Akram La Kilo, Kusrini Kusrini, Deasy Natalia Botutihe

Abstract


This research aims to study the stability of CeO2 structure which doped with trivalent oxide which become Ce1-xMxO2- ( M= Lu3+, Yb3+, Er3+, Y3+, Gd3+, Eu3+, Sm3+, dan La3+) compound through atomistic simulation, the value of x present the concentration number of the substitution dopant of Ce4+ partially and the concentration of the dopant is limited to 10%. This research is explorative theoretical using methods of computational chemistry by atomistic simulating using GULP. The objects in this study was 8 trivalent oxide with the short-range potential as the input data. Potential short-range used in this study is the Buckingham potential. The results of geometry optimization at a constant pressure showed the differences between cell parameters of doped CeO2 before and after the atomistic simulation corresponds with the experimental results is only 0.02%. The results showed that the stability of doped CeO2 structure is decreased with increasing concentrations of dopants. A decrease int he stability of CeO2 doped with Lu, Ce, Er, Gd, Eu, Nd and La is greater than the decrease in the stability of CeO2 doped with Sm, Y and Yb.

Keywords


atomistic simulation; ceria; trivalent dopant; lattice energy

Full Text:

PDF

References


Anwar, M., Muhammed, M. A., Muchtar, A., & Somalu, M. R. (2019). Influence of strontium co-doping on the structural, optical, and electrical properties of erbium-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.12.023

Artini, C., Carnasciali, M. M., Viviani, M., Presto, S., Plaisier, J. R., Costa, G. A., & Pani, M. (2018). Structural properties of Sm-doped ceria electrolytes at the fuel cell operating temperatures. Solid State Ionics. https://doi.org/10.1016/j.ssi.2017.12.009

Born, M., & Mayer, J. E. (1932). Zur Gittertheorie der Ionenkristalle. Zeitschrift Für Physik. https://doi.org/10.1007/BF01340511

Catlow, C. R. A. (1984). Transport in doped fluorite oxides. Solid State Ionics. https://doi.org/10.1016/0167-2738(84)90131-0

Chaudhary, S., Kumar, S., & Mehta, S. K. (2019). Systematic enumeration and proficient chemical sensing applications of Eu 3+ @CeO 2 nanocrystals. Materials Science and Engineering C. https://doi.org/10.1016/j.msec.2018.11.022

Chen, D., Zhang, D., He, D., Lu, J., Zhong, L., Han, C., & Luo, Y. (2018). Relationship between oxygen species and activity/stability in heteroatom (Zr, Y)-doped cerium-based catalysts for catalytic decomposition of CH3SH. Chinese Journal of Catalysis, 39(12), 1929–1941.

Choolaei, M., Cai, Q., Slade, R. C. T., & Amini Horri, B. (2018). Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.04.159

Deguchi, H., Yoshida, H., Inagaki, T., & Horiuchi, M. (2005). EXAFS study of doped ceria using multiple data set fit. Solid State Ionics. https://doi.org/10.1016/j.ssi.2005.04.043

Dove, M. T. (2008). An introduction to atomistic simulation methods. Seminarios de La SEM, 4, 7–37.

Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society - Faraday Transactions. https://doi.org/10.1039/a606455h

Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation. https://doi.org/10.1080/0892702031000104887

Goharshadi, E. K., Samiee, S., & Nancarrow, P. (2011). Fabrication of cerium oxide nanoparticles: Characterization and optical properties. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2011.01.063

Guan, T., Yang, Z., Sun, Y., & Guo, W. (2019). Anisotropic mechanical behavior of gadolinia-doped ceria solid electrolytes under tensile loading. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.10.014

Gupta, M., Shirbhate, S., Ojha, P., & Acharya, S. (2018). Processing and conductivity behavior of La, Sm, Fe singly and doubly doped ceria: As electrolytes for IT-SOFCs. Solid State Ionics. https://doi.org/10.1016/j.ssi.2018.03.005

He, D., Hao, H., Chen, D., Liu, J., Yu, J., Lu, J., … Luo, Y. (2017). Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition. Catalysis Today. https://doi.org/10.1016/j.cattod.2016.06.022

Hernández-Castillo, Y., García-Hernández, M., López-Marure, A., Luna-Domínguez, J. H., López-Camacho, P. Y., & Morales-Ramírez, Á. de J. (2019). Antioxidant activity of cerium oxide as a function of europium doped content. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.10.145

Jamshidijam, M., Thangaraj, P., Akbari-Fakhrabadi, A., Niño Galeano, M. A., Usuba, J., & Viswanathan, M. R. (2017). Influence of rare earth (RE=Nd, Y, Pr and Er) doping on the microstructural and optical properties of ceria nanostructures. Ceramics International. https://doi.org/10.1016/j.ceramint.2017.01.046

Kilner, J. A. (1983). Fast anion transport in solids. Solid State Ionics. https://doi.org/10.1016/0167-2738(83)90017-6

Kim, D. ‐J. (1989). Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite‐Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions. Journal of the American Ceramic Society. https://doi.org/10.1111/j.1151-2916.1989.tb07663.x

La Kilo, A., Costanzo, A., Mazza, D., Martoprawiro, M. A., Prijamboedi, B., & Ismunandar, I. (2020). Highest ionic conductivity of BIMEVOX (ME = 10% Cu, 10% Ga, 20% Ta): Computational modeling and simulation. Indonesian Journal of Chemistry, 20(3), 510. https://doi.org/10.22146/ijc.42635

La Kilo, A., Umamah, T. S., & Laliyo, L. A. R. (2019). Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic Modeling. Jurnal Kimia Sains Dan Aplikasi, 22(4), 129–135. https://doi.org/10.14710/jksa.22.4.129-135

Li, Z. P., Mori, T., Zou, J., & Drennan, J. (2013). Defects clustering and ordering in di- and trivalently doped ceria. Materials Research Bulletin. https://doi.org/10.1016/j.materresbull.2012.11.073

Minervini, L., Grimes, R. W., & Sickafus, K. E. (2000). Disorder in pyrochlore oxides. Journal of the American Ceramic Society. https://doi.org/10.1111/j.1151-2916.2000.tb01484.x

Ortega, P. P., Rocha, L. S. R., Cortés, J. A., Ramirez, M. A., Buono, C., Ponce, M. A., & Simões, A. Z. (2019). Towards carbon monoxide sensors based on europium doped cerium dioxide. Applied Surface Science. https://doi.org/10.1016/j.apsusc.2018.09.142

Pal, A. K., Som, S., & Lu, C. H. (2018). Synthesis and spectroscopic analysis of Sm3+ doped CeO2 ceramic powders for the application of white LEDs. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.07.036

Polychronopoulou, K., Zedan, A. F., AlKetbi, M., Stephen, S., Ather, M., Katsiotis, M. S., … AlHassan, S. (2018). Tailoring the efficiency of an active catalyst for CO abatement through oxidation reaction: The case study of samarium-doped ceria. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2017.12.001

Sudarsan, P., & Krishnamoorthy, S. B. (2018). Grain boundary scavenging through reactive sintering of strontium and iron in samarium doped ceria electrolyte for ITSOFC applications. Materials Research Bulletin. https://doi.org/10.1016/j.materresbull.2017.12.047

Sun, Q., Fu, Z., & Yang, Z. (2018). Effects of rare-earth doping on the ionic conduction of CeO2 in solid oxide fuel cells. Ceramics International. https://doi.org/10.1016/j.ceramint.2017.11.149

Wei, X., Pan, W., Cheng, L., & Li, B. (2009). Atomistic calculation of association energy in doped ceria. Solid State Ionics. https://doi.org/10.1016/j.ssi.2008.10.019

Xie, S., Wang, Z., Cheng, F., Zhang, P., Mai, W., & Tong, Y. (2017). Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy. https://doi.org/10.1016/j.nanoen.2017.02.029




DOI: https://doi.org/10.34312/jambchem.v3i1.9870

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jambura Journal of Chemistry



EDITORIAL OFFICE

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.