Optimisasi Koloni Semut dan Sistem Fuzzy untuk Kendali Lampu Lalu Lintas Pintar

Wrastawa Ridwan, Yuliyanti Kadir, Ifan Wiranto

Abstract


Pola pengaturan lampu lalu lintas waktu tetap yang tidak mempertimbangkan kondisi aktual persimpangan bisa menimbulkan kemacetan. Kemacetan dapat menyebabkan banyak kerugian, diantaranya yaitu banyaknya waktu terbuang dan bahan bakar yang habis dengan sia- sia.  Masalah ini dapat diatasi dengan  pengatur lampu lalu lintas pintar yaitu sebuah sistem pengatur lampu lalu lintas yang mampu beradaptasi dengan kondisi setiap ruas jalan pada persimpangan. Pada penelitian ini telah dilakukan pengembangan sistem pengatur lampu lalu lintas pintar berbasis pada logika fuzzy bertingkat dan algoritma optimisasi koloni semut (Ant Colony Optimization). Pada Logika Fuzzy Bertingkat, keluaran dari sistem logika fuzzy tahap pertama menjadi masukan ke sistem logika fuzzy tahap berikutnya. Keluaran dari Sistem Fuzzy adalah menentukan skala prioritas untuk fase hijau berikutnya. Selanjutnya algoritma optimisasi koloni semut melakukan perhitungan waktu hijau yang optimal pada fase tersebut. Berdasarkan hasil simulasi yang dilakukan diperoleh bahwa dengan menggunakan sistem pengatur lampu lalu lintas pintar dibanding dengan sistem pengatur lampu lalu lintas waktu tetap terjadi pengurangan panjang antrian kendaraan dan waktu tunggu kendaraan.

Fixed time traffic light control is a traffic light control system that does not take into account the actual conditions of the intersection, which can cause congestion. Congestion can cause a lot of losses, including a lot of wasted time and wasted fuel. This problem can be solved with a smart traffic light controller, which is a traffic light control system that is able to adapt to the conditions of each road section at the intersection. In this research, the development of smart traffic light control based on multi stage fuzzy logic and ant colony optimization (ACO) algorithm has been carried out. In multi stage fuzzy logic, the output of the first stage of the fuzzy logic becomes the input to the next stage of the fuzzy logic. The output of the fuzzy system is to determine the priority scale for the next green phase. Furthermore, Ant Colony Optimization calculates the optimal green time in that phase. Based on the simulation result, it is found that by using  smart traffic light control system compared to a fixed time traffic light control system, there  is a reduction in queue length and waiting time.


Keywords


Logika Fuzzy, Optimisasi Koloni Semut, Antrian, Waktu Tunggu

Full Text:

PDF

References


Alam, J., Pandey, M.K., & Ahmad, H., (2013): Intelligent Traffic Light Control System for Isolated Intersection Using Fuzzy Logic, Conference on Advances in Communication and Control System.

Mohanaselvi, S. & Shanpriya, B., “Application of Fuzzy Logic to Control Traffic Signals,” : AIP Conference Proceedings 2112, 020045 (2019); https://doi.org/10.1063/1.5112230.

Colotta, M., Bello, L.L., & Pau G., (2015), A novel approach for dynamic traffic lights management based on Wireless Sensor Networks and multiple fuzzy logic controllers, Expert Systems with Applications 42.

Prasetiyo, E.E., Wahyunggoro, O., & Sulistyo, S., (2015), Design and Simulation of Adaptive Traffic Light Controller Using Fuzzy Logic Sugeno Method , IEEE International Journal on Scientific and Research Publications 5(4)

Lamas, W.Q., Giacaglia, G.E.O., & Oliviera, E.C.,(2017), Intelligent Urban Traffic Flow Control: A Case Study on Fuzzy Logic Application, International Journal on Trasportation Engineering and Technology 3(3).

Wannige, C.T., & Sonnadara, D.U.J., (2009), Application of Adaptive Neuro-Fuzzy Traffic Signal Control for Multiple Junctions, IEEE International Conference on Industrial and Information Systems (ICHS).

Dereli, T., Cetinkaya, C., & Celic, N., (2018), Designing a Fuzzy Logic Controller for a Single Intersection: A Case Study in Gaziantep, Expert Sigma Journal of Engineering and Natural Sciences 36(3)

Liang, X., & Du X.,(2018), Deep Reinforcement Learning for Traffic Light Controling Vehicular Networks, IEEE Transactions on Vehicular Technology.

Tune, I., & Soylemez, M.T.,(2020), Intelligent Intersection Management Using Fuzzy Logic control and PI control, International Proceedings of Transport Research Arena TRA.

Joelianto, E., Sutarto,H.Y., Airulla, D.G., & Zaky, M., (2020), Design and Simulation of Traffic Light Control System at Two Intersections Using Max-Plus Model Predictive Control, International Journal of Artificial Intelligence 18(1).

Ridwan, W., Wiranto, I., & Dako, R.D.R., (2020), Ability estimation in computerized adaptive test using Mamdani Fuzzy Inference System, IOP Conf. Ser.: Mater. Sci. Eng. 850 012004

Ridwan, W., Wiranto, I., & Dako, R.D.R., (2021), Computerized Adaptive Test based on Sugeno Fuzzy Inference System, IOP Conf. Ser.: Mater. Sci. Eng. 1098 032077

Wiranto, I., Ridwan, W., (2021), Maneuvering Target Tracking With Constant Acceleration Motion Model Using Hybrid Mamdani Fuzzy-Kalman Filter Algorithm, ARPN Journal of Engineering and Applied Sciences. 16(2)

Kusumadewi, S., & Purnomo, H.,(2013), Aplikasi Logika Fuzzy untuk Pendukung Keputusan, Penerbit Graha Ilmu, Yogyakarta

Dorigo, M., & Stutzle, T., (2004), Ant Colony Optimization, The MIT Press, Cambridge, Massachusetts

Renfrew, D., & Yu, X.H., (2009), Traffic Signal Control with Swarm Intelligence, 2009 Fifth International Conference on Natural Computation, IEEEXplore

Joelianto, E., Wiranto, I., (2011) An Application of Ant Colony Optimization, Kalman Filter and Artificial Neural Network for Multiple Target Tracking Problems. International Journal of Artificial Intelligence, Vol. 7, number A11.

Wiranto, I., Bonok, Z., (2018), Application of Ant System and Nearest Neighbor Kalman Filter for Multi Target Tracking in Multi Sensor Radar System, ARPN Journal of Engineering and Applied Sciences. 13(15)




DOI: https://doi.org/10.37905/jjeee.v4i2.14473

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by:
Electrical Engineering Department
Faculty of Engineering
State University of Gorontalo
Jenderal Sudirman Street No.6, Gorontalo City, Gorontalo Province, Indonesia
Telp. 0435-821175; 081340032063
Email: redaksijjeee@ung.ac.id/redaksijjeee@gmail.com

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor