Dampak Gangguan Beban Lebih Terhadap Overload Shedding Gardu Induk 150kV Sukolilo Surabaya

Firhan Akbar, Tri Wrahatnolo

Abstract


Gangguan beban lebih dapat terjadi pada jaringan distribusi yang berdampak pada pemadaman listrik konsumen. Tujuan studi ini adalah untuk menganalisis akibat pengaruh gangguan beban lebih terhadap overload shedding pada sebuah gardu induk. Pembebanan transformator gardu induk 150kV Sukolilo telah melebihi 50%, maka dari itu ketika  salah satu transformator terjadi gangguan maka akan membuat pembebanan transformator yang lain meningkat. Penelitian dampak gangguan beban lebih terhadap Overload Shedding pada gardu induk 150kV Sukolilo ini menggunakan metode aliran daya dan kontingensi menggunakan ETAP 19.0. Terdapat 3 kondisi  simulasi kontingensi yang dilakukan, yaitu 1 kondisi penghantar mengalami trip dan 2 kondisi transformator mengalami trip. Simulasi gangguan beban lebih yang terjadi pada kontingensi ke 1 hingga 3 mengakibatkan dampak pada sistem yang menyebabkan overload shedding harus bekerja. Pada kontingensi 1 dan 3 menyebabkan overload shedding tahap 1 bekerja sehingga memadamkan beban sebesar 18,7 MW, namun pada kontingensi ke 2 menyebakan hingga overload shedding tahap 2 memadamkan total beban sebesar 54,5 MW. Tahapan pelepasan beban pada gardu induk 150kV Sukolilo  telah sesuai standar IEEE Std C37 106-2003  yaitu maksimal pelepasan beban pada tahap pertama yakni 10% setara 38,56 MW  dan tahap kedua 15% setara 57 MW. Hasil simulasi overload shedding ini dapat mengurangi resiko pemadaman yang bekelanjutan.

Overload fault can occur in the distribution network, resulting in consumer power outages. The purpose of this study is to analyse the effect of a fault on the overload of a substation circuit. Transformer loading of 150kV Sukolilo substation has exceeded 50%, thus if a fault occurs in one of the transformers it will make the loading of other transformers increase. This research on the impact of overload faults on Overload Shedding at the 150kV Sukolilo substation uses the power flow and contingency method using ETAP 19.0. There are 3 contingency simulation conditions carried out, namely 1 condition of the conductor experiencing a trip and 2 conditions of the transformer experiencing a trip. Simulation of overload faults that occur in contingencies 1 to 3 results in an impact on the system that causes overload shedding to work. In contingency 1 and 3 caused overload shedding stage 1 to work so that it extinguished a load of 18.7 MW, but in contingency 2 caused overload shedding stage 2 to extinguish a total load of 54.5 MW. The stages of load shedding at the 150kV Sukolilo substation are in accordance with IEEE Std C37 106-2003 standards, namely the maximum load shedding in the first stage is 10% equivalent to 38.56 MW and the second stage is 15% equivalent to 57 MW. The results of this overload shedding simulation can reduce the risk of continuous blackouts.


Keywords


Gangguan; Overload Shedding; Gardu Induk

Full Text:

PDF

References


H. Samet, M. Tajdinian, S. Khaleghian, and T. Ghanbari, “A statistical-based criterion for incipient fault detection in underground power cables established on voltage waveform characteristics,” Electr. Power Syst. Res., vol. 197, no. May, p. 107303, 2021, doi: 10.1016/j.epsr.2021.107303.

J. J. Chavez et al., “PMU-voltage drop based fault locator for transmission backup protection,” Electr. Power Syst. Res., vol. 196, no. March, p. 107188, 2021, doi: 10.1016/j.epsr.2021.107188.

G. Song, J. Hou, B. Guo, T. Wang, B. Masood, and S. T. H. Kazmi, “Single-ended active injection for fault location in hybrid MMC-HVDC systems,” Int. J. Electr. Power Energy Syst., vol. 124, no. December 2019, p. 106344, 2021, doi: 10.1016/j.ijepes.2020.106344.

R. Hutagaol, U. Situmeang, and Zulfahri, “Studi Overload Shedding Pada Transformator Daya Gardu Induk Garuda Sakti,” SainETIn, vol. 4, no. 1, pp. 1–8, 2019, doi: 10.31849/sainetin.v4i1.3976.

F. Fauzi, S. Subhan, M. Muliadi, S. Syukri, T. M. Asyadi, and A. S. Budi, “Analisis Tingkat Keandalan Pada Jaringan Express Feeder SUTM A3CS Sebagai Incoming Baru,” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 48–54, 2023, doi: 10.37905/jjeee.v5i1.17006.

Syukri, T. M. Asyadi, M. Muliadi, and F. Moesnadi, “Analisa Pembebanan Transformator Distribusi 20 kV Pada Penyulang LS5 Gardu LSA 249,” Jambura J. Electr. Electron. Eng., vol. 4, pp. 119–125, 2022.

P. Salyani, R. Nourollahi, K. Zare, and R. Razzaghi, “A new MILP model of switch placement in distribution networks with consideration of substation overloading during load transfer,” Sustain. Energy, Grids Networks, vol. 32, 2022, doi: 10.1016/j.segan.2022.100944.

R. Ady Zakaria, “Analisa Undervoltage Load Shedding Pada Sistem Jawa-Bali 500 Kv Untuk Mencegah Voltage Collapse,” Institut Teknologi Sepuluh Nopember, 2017.

X. Jin et al., “Alleviation of overloads in transmission network: A multi-level framework using the capability from active distribution network,” Int. J. Electr. Power Energy Syst., vol. 112, no. April, pp. 232–251, 2019, doi: 10.1016/j.ijepes.2019.05.007.

D. S. Yansuri, D. E. Putra, and M. Firdaus, “Pemasangan Relai Over Load Sheeding (Ols) Pada Transformator Daya 30 Mva,” vol. 12, no. 1, pp. 8–17, 2022, doi: 10.36546/jte.v12i1.628.

B. Winardi, A. Nugroho, T. Sukmadi, and A. A. Zahra, “Simulasi Pelepasan Beban Dengan Over Load Shedding Sebagai Proteksi Saluran Transmisi Tenaga Listrik Berbasis Arduino Mega 2560,” Semin. Nas. Inov. dan Apl. Teknol. di Ind. 2019, pp. 142–147, 2019, doi: 10.36040/seniati.v5i4.1155.

D. E. Putra and A. Siahaan, “Studi Penerapan Over Load Shedding (OLS) Relay Pada Sisi Sekunder Transformator Daya 20 MVA Penyulang Aries 20 kV Di Gardu Induk Lahat,” J. AMPERE, vol. 2, no. 1, p. 1, Jun. 2017, doi: 10.31851/ampere.v2i1.1205.

J. Jallad, S. Mekhilef, H. Mokhlis, J. Laghari, and O. Badran, “Application of hybrid meta-heuristic techniques for optimal load shedding planning and operation in an islanded distribution network integrated with distributed generation,” Energies, vol. 11, no. 5, 2018, doi: 10.3390/en11051134.

N. M. Sapari, H. Mokhlis, J. A. Laghari, A. H. A. Bakar, and M. R. M. Dahalan, “Application of load shedding schemes for distribution network connected with distributed generation: A review,” Renew. Sustain. Energy Rev., vol. 82, no. January 2016, pp. 858–867, 2018, doi: 10.1016/j.rser.2017.09.090.

J. I. Sarasúa, G. Martínez-Lucas, J. I. Pérez-Díaz, and D. Fernández-Muñoz, “Alternative operating modes to reduce the load shedding in the power system of El Hierro Island,” Int. J. Electr. Power Energy Syst., vol. 128, 2021, doi: 10.1016/j.ijepes.2020.106755.

I. R. Fitri and J. S. Kim, “Economic Dispatch Problem using Load Shedding: Centralized Solution,” IFAC-PapersOnLine, vol. 52, no. 4, pp. 40–44, 2019, doi: 10.1016/j.ifacol.2019.08.152.

J. Huang et al., “Optimal substation capacity planning method in high-density load areas considering renewable energy,” Energy Reports, vol. 9, pp. 1520–1530, 2023, doi: 10.1016/j.egyr.2023.04.104.

A. Anung and A. Ramadhani, “Penerapan Ols Untuk Meminimalisir Pemadaman Meluas Akibat Overload Pada Satu Penghantar,” J. Online Sekol. …, 2017, [Online]. Available: http://ejournal.sttmandalabdg.ac.id/index.php/JIT/article/view/34

E. H. Harun, M. T. Adam, and J. Ilham, “Perbaikan Kualitas Tegangan Distribusi 20 kV di Gardu Hubung Lemito Melalui Studi Aliran Daya,” Jambura J. Electr. Electron. Eng., vol. 4, no. 2, pp. 143–147, 2022, doi: 10.37905/jjeee.v4i2.13825.

R. Indrriyani, E. H. Harun, and Y. Mohamad, “Analisis Aliran Daya Pada Sistem Tenaga Listrik Sulawesi Utara Dan Gorontalo Menggunakan Metode Fast Decoupled,” Jambura J. Electr. Electron. Eng..

C. I. Cahyadi, K. Atmia, and A. Fitriani, “Analisis Pengaruh Rugi-Rugi Daya Pada Jaringan Transmisi 150 kV Menggunakan Software Etap 12.6,” Jambura J. Electr. Electron. Eng., vol. 4, no. 2, pp. 126–130, 2022, doi: 10.37905/jjeee.v4i2.13306.

S. Omran, R. Broadwater, J. Hambrick, M. Dilek, C. Thomas, and F. Kreikebaum, “Power flow control and N-1 contingency analysis with DSRs in unbalanced transmission networks,” Electr. Power Syst. Res., vol. 136, pp. 223–231, 2016, doi: 10.1016/j.epsr.2016.02.024.

IEE Std C37 106-2003, IEEE guide for abnormal frequency protection for power generating plants, vol. 2003, no. February. 2004. doi: 10.1109/IEEESTD.2004.94434.

D. V. Thiel, Research methods for engineers, no. July. 2014. doi: 10.1017/CBO9781139542326.




DOI: https://doi.org/10.37905/jjeee.v5i2.20137

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by:
Electrical Engineering Department
Faculty of Engineering
State University of Gorontalo
Jenderal Sudirman Street No.6, Gorontalo City, Gorontalo Province, Indonesia
Telp. 0435-821175; 081340032063
Email: redaksijjeee@ung.ac.id/redaksijjeee@gmail.com

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.