Application of the K-Medoids Clustering Algorithm to Determine the Nutritional Status of Toddlers

Betrisandi Betrisandi, Maryam Hasan, Bahrin Bahrin

Abstract


Stunting is a chronic malnutrition problem due to a lack of nutritional intake in the body for a long time, as a result of which there is a growth disorder in children, namely the child's height becomes shorter or dwarfed than the standard age. The problem of malnutrition in toddler is a major concern in various countries. Based on the data from the Ministry of Health of the Republic of Indonesia in 2018, 30.8% of Indonesian toddlers were malnourished. Malnutrition in toddlers is very influential on physical and mental growth such as intellectual intelligence, speaking, walking, learning, immune system and low body immune system. The purpose of thisstudy is to classify the nutritional status of toddler into five cluster namely cluster 0 poor, cluster 1 undernourished, cluster 2 good nutrition, cluster 3 over nutrition and cluster 4 obesity by using the K-Medoids Algorithm method. K-Medoids Algorithmis one of the Algorithm used in data and mining. K-Medoids Algorithm is relatively fast and simple, making it easier to find Medoids in a group (cluster). Based on the data on toddlers there are 74 toddlers, the results of clustering are obtained from grouping, cluster 0 is 13 toddlers with bad nutrition, cluster 1 is undernutrition 15 toddlers, cluster 2 is good nutrition 21 toddlers, cluster 3 is over nutrition 23 toddlers and cluster 4 is obesity totaling 2 toddlers.

Stunting merupakan masalah kurang gizi kronis karena kurangnya asupan gizi pada tubuh dalam waktu yang cukup lama akibatnya terjadi gangguan pertumbuhan pada anak-anak yakni tinggi badan anak menjadi lebih pendek atau kerdil dari standar usianya. Masalah kurang gizi padakelompok balita menjadi perhatian utama diberbagai negara. Berdasarkan data Kemenkes RI tahun 2018 sebanyak 30,8 % balita Indonesia mengalami gizi buruk. Gizi kurang pada balita sangat berpengaruh pada pertumbuhan fisik maupun mental seperti kecerdasan intelektual, berbicara, berjalan, belajar, daya tahan tubuh serta sistem imun tubuh rendah. Adapun tujuan dari penelitian ini adalah untuk mengelompokkan status gizi balita ke dalam 5 cluster yaitu cluster 0 gizi buruk, cluster 1 gizi kurang, cluster 2 gizi baik, cluster 3 gizi lebih dan cluster 4 obesitas dengan menggunakan metode Algoritma K-Medoids. Algoritma K-Medoids merupakan salah satu algoritma yang digunakan dalam data mining. Algoritma K-medoids relatif cepat dan sederhana sehingga memudahkan menemukan medoids dalam sebuah kelompok (cluster). Berdasarkan data balita yang ada sejumlah 74 balita maka didapatkan hasil clustering dari pengelompokkan dengan cluster 0 yaitu gizi Buruk berjumlah 13 balita, cluster 1 yaitu gizi kurang berjumlah 15 balita, cluster 2 yaitu gizi baik sejumlah 21 balita, cluster 3 yaitu gizi lebih berjumlah 23 balita dan cluster 4 obesitas berjumlah 2 balita. 


Keywords


Toddlers; Nutrition; K-Medoids; Clustering

Full Text:

PDF

References


A. Boucot and G. Poinar Jr., “Stunting,” Foss. Behav. Compend., vol. 5, pp. 243–243, 2010, doi: 10.1201/9781439810590-c34.

W. H.J., M. F.M., and N. S., “Risk factors of malnutrition among preschool children in Terengganu, Malaysia: a case control study,” BMC Public Health, vol. 14, pp. 1–10, 2014, [Online]. Available: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed13&NEWS=N&AN=25086853.

R. Harun, “Pelacakan Objek Bergerak Berdasarkan Pendekatan Adaptive Threshold untuk Alpha Matting Menggunakan Metode K-Means,” Jambura J. Electr. Electron. Eng., vol. 2, no. 1, pp. 1–7, 2020, doi: 10.37905/jjeee.v2i1.4289.

R. Ishak and A. Bengnga, “Clustering Prestasi Akademik Lulusan Menggunakan Metode K-Means,” Jambura J. Electr. Electron. Eng., vol. 6, no. 1, pp. 76–81, 2024, doi: 10.37905/jjeee.v6i1.23967.

A. Bengnga and R. Ishak, “Penerapan XGBoost untuk Seleksi Atribut pada K-Means dalam Clustering Penerima KIP Kuliah,” Jambura J. Electr. Electron. Eng., vol. 5, no. 2, pp. 192–196, 2023, doi: 10.37905/jjeee.v5i2.20253.

Y. Lasena and Y. Malago, “Clustering Komoditi Unggulan Daerah Provinsi Gorontalo Menggunakan Algoritma K-Means,” Jambura J. Electr. Electron. Eng., vol. 2, no. 1, pp. 14–18, 2020, doi: 10.37905/jjeee.v2i1.4392.

E. H. S. Atmaja, “Implementation of k-Medoids Clustering Algorithm to Cluster Crime Patterns in Yogyakarta,” Int. J. Appl. Sci. Smart Technol., vol. 1, no. 1, pp. 33–44, 2019, doi: 10.24071/ijasst.v1i1.1859.

S. B. Efori Buulolo, “Implementasi Algoritma Apriori Pada Sistem Persediaan Obat ( Studi Kasus : Apotik Rumah Sakit Estomihi Medan ) Implementasi Algoritma Apriori Pada Sistem Persediaan Obat ( Studi Kasus : Apotik Rumah Sakit Estomihi Medan ),” J. Tek. Inform., vol. 4, no. August 2013, pp. 71–83, 2017.

P. Silitonga and I. S. Morina, “Klusterisasi Pola Penyebaran Penyakit Pasien Berdasarkan Usia Pasien Dengan Menggunakan K-Means Clustering,” J. TIMES, vol. 6, no. 2, pp. 22–25, 2018, doi: 10.51351/jtm.6.2.2017584.

R. Ishak and A. Bengnga, “Clustering Tingkat Pemahaman Mahasiswa Pada Perkuliahan Probabilitas Statistika Dengan Metode K-Means,” Jambura J. Electr. Electron. Eng., vol. 4, no. 1, pp. 65–69, 2022, doi: 10.37905/jjeee.v4i1.11997.

S. Velamparambil, S. Mackinnon-Cormier, J. Perry, R. Lemos, M. Okoniewski, and J. Leon, “GPU accelerated Krylov subspace methods for computational electromagnetics,” Proc. 38th Eur. Microw. Conf. EuMC 2008, vol. 1, no. 9, pp. 1312–1314, 2008, doi: 10.1109/EUMC.2008.4751704.

D. Marlina, N. Lina, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, p. 64, 2018, doi: 10.24014/coreit.v4i2.4498.

W. M. P. Dhuhita, “Clustering Menggunakan Metode K-Means Untuk Menentukan Status Gizi Balita,” J. Inform., vol. 15, no. 2, pp. 160–174, 2015.

S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R.H.Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,” J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020, doi: 10.36294/jurti.v4i1.1296.

T. Velmurugan, “Efficiency of k-Means and K-Medoids Algorithms for Clustering Arbitrary Data Points,” Int. J. Comput. …, vol. 3, no. 5, pp. 1758–1764, 2012, [Online]. Available: http://www.researchgate.net/publication/233986697_Efficiency_of_k-Means_and_K-Medoids_Algorithms_for_Clustering_Arbitrary_Data_Points/file/d912f50dc62a03083a.pdf.




DOI: https://doi.org/10.37905/jjeee.v7i1.27523

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by:
Electrical Engineering Department
Faculty of Engineering
State University of Gorontalo
Jenderal Sudirman Street No.6, Gorontalo City, Gorontalo Province, Indonesia
Telp. 0435-821175; 081340032063
Email: redaksijjeee@ung.ac.id/redaksijjeee@gmail.com

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.