Performance Analysis of Three Phase Cascaded H-Bridge Multilevel Inverter Design for Solar Power Plant Optimization

Reza Sarwo Widagdo, Puji Slamet, Balok Hariadi

Abstract


An inverter is an electrical device that converts direct current (DC) into alternating current (AC). Typically, a standard inverter operates at three voltage levels: +Vdc, -Vdc, and 0. However, a multilevel inverter consists of several smaller inverters connected in a series to produce multiple voltage levels at the output. The primary advantage of this type of inverter lies in its ability to produce a much lower harmonic distortion compared to traditional, non-multilevel inverters. Additionally, the switching components of a multilevel inverter operate at lower frequencies, which makes it more suitable for highpower applications. This research focuses on a threephase cascaded multilevel inverter, specifically generating output waveforms with up to seven levels. The study involves conducting experiments using RL loads, to observe how these variations affect the output waveforms and their harmonic distortions. The result, THDi values are much lower, with the 3rd harmonic contributing 0.02%, the 5th contributing 0.006%, the 7th contributing 0.004%, the 9th contributing 0.002%, the 11th contributing 0.002%, and the 13th harmonic contributing just 0.001%. These results suggest that the voltage harmonic more significant harmonic distortion than the current, particularly at the 13th harmonic order. This increase highlights the effect of inductive loads on the performance of the inverter, particularly in terms of harmonic content. These findings are crucial for optimizing multilevel inverters in practical applications, ensuring improved performance and efficiency.

Keywords


Harmonics; Multilevel Inverter; Power Electronics

Full Text:

PDF

References


Widagdo, R. S., Andriawan, A. H., Slamet, P., Budiono, G., Wardah, I. A., & Hartayu, R. (2023, November). Harmonic Mitigation Using Passive Filters in 3-Phase Inverters to Improve Power Quality on Microgrid. In 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA) (pp. 295-300). IEEE.

El Hammoumi, A., Chtita, S., Motahhir, S., & El Ghzizal, A. (2022). Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Reports, 8, 11992-12010.

Srinivasan, G. K., Rivera, M., Loganathan, V., Ravikumar, D., & Mohan, B. (2021). Trends and challenges in multi-level inverter with reduced switches. Electronics, 10(4), 368.

Balal, A., Dinkhah, S., Shahabi, F., Herrera, M., & Chuang, Y. L. (2022). A review on multilevel inverter topologies. Emerging Science Journal, 6(1), 185-200.

Lopez, O., Teodorescu, R., Freijedo, F., & DovalGandoy, J. (2007, February). Leakage current evaluation of a singlephase transformerless PV inverter connected to the grid. In APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition (pp. 907-912). IEEE.

Merai, M., Naouar, M. W., Slama-Belkhodja, I., & Monmasson, E. (2021). A systematic design methodology for DC-link voltage control of single phase grid-tied PV systems. Mathematics and Computers in Simulation, 183, 158-170.

Ali Khan, M. Y., Liu, H., Yang, Z., & Yuan, X. (2020). A comprehensive review on grid connected photovoltaic inverters, their modulation techniques, and control strategies. Energies, 13(16), 4185.

Boscaino, V., Ditta, V., Marsala, G., Panzavecchia, N., Tine, G., Cosentino, V., ... & Di Cara, D. (2024). Grid-connected photovoltaic inverters: Grid codes, topologies and control techniques. Renewable and Sustainable Energy Reviews, 189, 113903.

Goyal, V. K., & Shukla, A. (2020). Isolated DC–DC boost converter for wide input voltage range and wide load range applications. IEEE Transactions on Industrial Electronics, 68(10), 9527-9539.

Jamal, I., Elmorshedy, M. F., Dabour, S. M., Rashad, E. M., Xu, W., & Almakhles, D. J. (2022). A comprehensive review of grid-connected PV systems based on impedance source inverter. IEEE Access, 10, 89101-89123.

Callegari, J. M. S., Cupertino, A. F., de Nazareth Ferreira, V., & Pereira, H. A. (2020). Minimum DC-link voltage control for efficiency and reliability improvement in PV inverters. IEEE Transactions on Power Electronics, 36(5), 5512-5520.

Zidane, T. E. K., Aziz, A. S., Zahraoui, Y., Kotb, H., Aboras, K. M., & Jember, Y. B. (2023). Grid-connected Solar PV power plants optimization: A review. IEEE Access.

Elsanabary, A. I., Konstantinou, G., Mekhilef, S., Townsend, C. D., Seyedmahmoudian, M., & Stojcevski, A. (2020). Medium voltage large-scale grid-connected photovoltaic systems using cascaded H-bridge and modular multilevel converters: A review. IEEE Access, 8, 223686-223699.

Alotaibi, S., & Darwish, A. (2021). Modular multilevel converters for large-scale grid-connected photovoltaic systems: A review. Energies, 14(19), 6213.

Blaabjerg, F., Yang, Y., Kim, K. A., & Rodriguez, J. (2023). Power electronics technology for large-scale renewable energy generation. Proceedings of the IEEE, 111(4), 335-355.

Khodaparast, A., Hassani, M. J., Azimi, E., Adabi, M. E., Adabi, J., & Pouresmaeil, E. (2020). Circuit configuration and modulation of a seven-level switched-capacitor inverter. IEEE Transactions on Power Electronics, 36(6), 7087-7096.

Siddique, M. D., Rawa, M., Mekhilef, S., & Shah, N. M. (2021). A new cascaded asymmetrical multilevel inverter based on switched dc voltage sources. International Journal of Electrical Power & Energy Systems, 128, 106730.

Majumdar, S., Mahato, B., & Jana, K. C. (2020). Analysis and implementation of a generalised switchedâ€capacitor multiâ€level inverter having the lower total standing voltage. IET Power Electronics, 13(17), 4031-4042.

Biswas, S. P., Anower, M. S., Haq, S., Islam, M. R., Rahman, M. A., & Muttaqi, K. M. (2023). A new level shifted carrier based PWM technique for a cascaded multilevel inverter based induction motor drive. IEEE Transactions on Industry Applications, 59(5), 5659-5671.

Mondol, M. H., Biswas, S. P., Rahman, M. A., Islam, M. R., Mahfuz-Ur-Rahman, A. M., & Muttaqi, K. M. (2022). A new hybrid multilevel inverter topology with level shifted multicarrier PWM technique for harvesting renewable energy. IEEE Transactions on Industry Applications, 58(2), 2574-2585.

Zhang, G., & Yu, J. (2021). Open-circuit fault diagnosis for cascaded H-bridge multilevel inverter based on LS-PWM technique. CPSS Transactions on Power Electronics and Applications, 6(3), 201-208.

Saleh, A. A., Antar, R. K., & Al-Badrani, H. A. (2021). Design of new structure of multilevel inverter based on modified absolute sinusoidal PWM technique. International Journal of Power Electronics and Drive Systems, 12(4), 2314.

Widagdo, R. S. W., Budiono, G., & Novianto, M. I. (2023). Analysis of Capasitor Bank Installation for Power Quality Improvement at PT. Sunrise Steel. Wahana, 75(2), 60-72.

Widagdo, R. S., Setyadjit, K., & Wardah, I. A. (2023). Analysis and Mitigation of Harmonics Distortion with Optimization Capacitor Banks and Single-Tuned Passive Filters. Jambura Journal of Electrical and Electronics Engineering, 5(2), 204-209.

Widagdo, R. S., Andriawan, A. H., & Tauladan, I. S. (2023). Harmonic Mitigation with Active Filter in Coal Boiler Plant PT. Salim Ivomas Pratama. Jurnal ELEMENTER (Elektro dan Mesin Terapan), 9(2), 235-245.




DOI: https://doi.org/10.37905/jjeee.v7i1.28035

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by:
Electrical Engineering Department
Faculty of Engineering
State University of Gorontalo
Jenderal Sudirman Street No.6, Gorontalo City, Gorontalo Province, Indonesia
Telp. 0435-821175; 081340032063
Email: redaksijjeee@ung.ac.id/redaksijjeee@gmail.com

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Â