Optimization of Genetic Algorithm Computation Time with Mutation Probability Variations in Course Scheduling

Rudi Salman, Suprapto Suprapto, Irfandi Irfandi, Olnes Yosefa Hutajulu

Abstract


Genetic Algorithm (GA) often requires a long computation time due to the complexity of its processes. Therefore, efforts are needed to optimize GA computation time, particularly in scheduling lectures at the Electrical Engineering Study Program of Universitas Negeri Medan, which is the focus of this research. One possible approach is determining the appropriate mutation probability (Pm) value. This study employs the Mutation Probability Variation Method, where Pm is constrained between 0 and 1 and varied from a minimum value of 0.01 (1%) to a maximum value of 0.1 (10%). Simulations were conducted using Matlab R2012b, with constant parameters including a population size of 100 and a crossover probability (Pc) of 0.85. Iterations were performed to evaluate the effect of Pm on computation time and solution performance. The results show that at Pm = 0.06, the Genetic Algorithm achieved the fastest computation time, averaging 0.382 seconds. This study also identifies that GA computation time is significantly influenced by algorithm parameters and the complexity of the problem. By selecting an appropriate Pm, a balance between exploration and exploitation can be achieved, reducing computation time without sacrificing solution quality. This research contributes significantly to the development of more efficient algorithms for optimization applications, particularly in lecture scheduling.

Waktu komputasi dalam Algoritma Genetika (AG) sering kali memerlukan waktu yang lama akibat kompleksitas komputasi yang dikerjakan. Oleh karena itu, perlu dilakukan upaya untuk mengoptimalkan waktu komputasi AG, khususnya dalam perencanaan jadwal kuliah di Program Studi Teknik Elektro Universitas Negeri Medan, yang menjadi objek penelitian. Salah satu upaya yang dapat dilakukan adalah dengan menentukan nilai probabilitas mutasi (Pm) yang tepat. Penelitian ini menggunakan Metode Variasi Probabilitas Mutasi, di mana nilai Pm dibatasi antara 0 hingga 1 dan divariasikan dari nilai minimum 0,01 (1%) hingga nilai maksimum 0,1 (10%). Simulasi dilakukan menggunakan perangkat lunak Matlab R2012b, dengan parameter konstan yaitu ukuran populasi 100 dan probabilitas crossover (Pc) 0,85. Proses iterasi dilakukan untuk mengevaluasi pengaruh Pm terhadap waktu komputasi dan performa solusi. Hasil simulasi menunjukkan bahwa pada Pm = 0,06, Algoritma Genetika mencapai waktu komputasi tercepat, yaitu 0,382 detik. Penelitian ini juga mengidentifikasi bahwa waktu komputasi AG sangat dipengaruhi oleh parameter algoritma dan kompleksitas masalah yang dihadapi. Dengan pemilihan Pm yang tepat, keseimbangan antara eksplorasi dan eksploitasi dapat dicapai, sehingga waktu komputasi berkurang tanpa mengorbankan kualitas solusi. Penelitian ini memberikan kontribusi signifikan dalam pengembangan algoritma yang lebih efisien untuk aplikasi optimasi penjadwalan kuliah. 


Keywords


Genetic algorithm; matlab R2012b; mutation; optimization; course scheduling

Full Text:

PDF

References


Rifky S, Kharisma LP, Afendi HA, Napitupulu S, Ulina M, Lestari WS, Maysanjaya IM, Kelvin K, Sinaga FM, Muchtar M, Judijanto L. Artificial Intelligence: Teori dan Penerapan AI di Berbagai Bidang. PT. Sonpedia Publishing Indonesia; 2024.

Utomo DW, Kurniawan D, Sani RR. Pemodelan Algoritma Genetika dalam Pengelompokan Siswa Pada Kolaborasi Tim Proyek Perangkat Lunak. InSeri Prosiding Seminar Nasional Dinamika Informatika 2020.

Halawa F. Penerapan Algoritma Genetika Dan Backpropagation Neural Network Untuk Memprediksi Jumlah Penduduk Kota Medan. Informasi dan Teknologi Ilmiah (INTI). 2020.

Amri F. Spatial decision support system dynamic menggunakan topsis-algoritma genetika untuk menentukan tingkat kerusakan sektor pasca bencana (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).

Sari EY, Rahmawati T. Pemodelan Sistem Optimasi Penjadwalan Matakuliah Dengan Algoritma Genetika. TEKNIMEDIA: Teknologi Informasi dan Multimedia. 2023.

Hassan A, Bass O, Masoum MA. An improved genetic algorithm based fractional open circuit voltage MPPT for solar PV systems. Energy Reports. 2023.

Ghezelbash R, Maghsoudi A, Shamekhi M, Pradhan B, Daviran M. Genetic algorithm to optimize the SVM and K-means algorithms for mapping of mineral prospectivity. Neural Computing and Applications. 2023.

Costa-Carrapiço I, Raslan R, González JN. A systematic review of genetic algorithm-based multi-objective optimisation for building retrofitting strategies towards energy efficiency. Energy and Buildings. 2020.

Alam T, Qamar S, Dixit A, Benaida M. Genetic algorithm: Reviews, implementations, and applications. arXiv preprint arXiv:2007.12673. 2020.

Wu P, He Y, Li Y, He J, Liu X, Wang Y. Multi-objective optimisation of machining process parameters using deep learning-based data-driven genetic algorithm and TOPSIS. Journal of Manufacturing Systems. 2022.

Pangestu LA, Suryawan SH, Latipah AJ. Penerapan Algoritma Genetika Dalam Penjadwalan Mata Pelajaran. Jurnal Informatika. 2023, pp.194-205.

Pratama Y. Optimalisasi Penjadwalan Karyawan Paruh Waktu Berdasarkan Nilai Fitness Terbaik Menggunakan Algoritma Genetika. Jurnal Nasional Informatika (Junif). 2021, pp.114-42.

Hatim HA, Ahmad F. Pendekatan Algoritma Genetika Dalam Upaya Optimalisasi Penjadwalan Di Pt. Nuansa Indah. JISI: Jurnal Integrasi Sistem Industri. 2022 pp.145-54.

Mubarok AY, Chotijah U. Application of Genetic Algorithm to Find the Shortest Path Combination Optimization in the Case of the Traveling Salesman Problem. Jurnal Teknologi Terpadu. 2021, pp.77-82.

Rivera, Martín Montes, Alberto Ochoa-Zezzatti, and Sebastián Pérez Serna. "Embedded system for model characterization developing intelligent controllers in industry 4.0." Artificial Intelligence and Industry 4.0. Academic Press, 2022. 57-91.

Salman R, Irfandi I, Suprapto S, Rahman S, Herdianto H. Analysis of Crossover Probability on Genetic Algorithm Performance in Optimizing Course Scheduling in the Unimed Electrical Engineering Study Program. InProceedings of the 5th International Conference on Innovation in Education, Science, and Culture, ICIESC 2023, 24 October 2023.

Pratiwi AI, Triana NN, Sayuti M, Hakim A, Adetia D, Nurohman AR, Pazri S. Penentuan rute terbaik pendistribusian produk wafer dengan metode algoritma genetika (studi kasus di perusahaan jasa pergudangan produk wafer Karawang). JISI: Jurnal Integrasi Sistem Industri. 2023, pp.69-75.

Meliana C. Perbandingan Metode Long Short-Term Memory (LSTM) DAN Genetic Algorithm-Long Short-Term Memory (GA-LSTM) Pada Peramalan Polutan Udara (Doctoral dissertation, Universitas Muhammadiyah Semarang).




DOI: https://doi.org/10.37905/jjeee.v7i1.28286

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by:
Electrical Engineering Department
Faculty of Engineering
State University of Gorontalo
Jenderal Sudirman Street No.6, Gorontalo City, Gorontalo Province, Indonesia
Telp. 0435-821175; 081340032063
Email: redaksijjeee@ung.ac.id/redaksijjeee@gmail.com

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.