

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

JAMBURA JOURNAL OF INFORMATICS

Volume 5, No. 2 | October 2023, pp. 141-151

ISSN 2685-4244, doi: 10.37905/jji.v5i2.21995

Halstead’s complexity measure of a merge sort and modified merge sort

algorithms

Ghaniyyat Bolanle Balogun, Muhideen Abdulraheem, Peter Ogirima Sadiku, Olawale Debo

Taofeek, Adebisi Sodiq Adewale

Department of Computer Science, University of Ilorin, Kwara State, Nigeria

Corresponding Author:
Ghaniyyat Bolanle Balogun,

Department of Computer Science, University of Ilorin,
Ilorin South, Kwara State, Nigeria.

Email: balogun.gb@unilorin.edu.ng

INTRODUCTION

Information technology systems are classified as some of the most complex artifacts that mankind

produces (Sharma et al., 2016). In computer programming, as in other aspects of life, there are

different ways of solving a problem. These different ways may imply different times, computational

power, or any other metric you choose, so we need to compare the efficiency of different approaches

to pick the right one.

Assessing complexity can significantly contribute to attaining the various quality attributes associated

with a system. The avoidable complexity can be identified and reduced based on the assessment. It

holds the key to the success of the system being developed. Various evaluation methods exist which

have specific objectives and basis, and all contribute to enhancing product quality (Maushumi &

Uzzal, 2019)

Software Complexity influences inward connections. The higher the multifaceted nature, the bigger

the deformities. Programming complexity for any product or program is complex to discover without

utilizing any measurements. Search algorithm complexity has been mostly evaluated mathematically

or by computing the computer execution time. Neither of the two approaches is good enough for

practical and realistic purposes, especially when more than one algorithm exists for solving a given

problem or class of problems (Hasan et al., 2023).

Article history:

Received September 11, 2023

Revised November 7, 2023

Accepted November 8, 2023

Published November 17, 2023

 ABSTRACT. Complexity measuring tools in computer science are deployed to
measure and compare different characteristics of algorithms to find the best one
to solve a particular problem or that suits a specific situation. Also, this is used to
measure the complexity of a software program without running the program itself.
Given this, Halstead’s complexity metrics are deployed to compare the efficiency
of two external sorting methods: the Merge Sort and the Modified Merge Sort
Algorithms. The methodology used in achieving this lies in extracting operators
and operands from the C_sharp (C#) implemented program of the two algorithms.
Six Halstead metrics are evaluated using these operators and operands as
parameters. The results show that the modified merge sort algorithm is much more
efficient than the conventional Merge sort as it has a lower Program Volume,
Program Difficulty, and Program Effort even though the advantage of a higher
Intelligence content goes to the merge sort algorithm.

This is an open-access article under the CC–BY-SA license.

Keywords:

Algorithms

Complexity measure

Halstead metrics

Modified merge sort algorithm

mailto:balogun.gb@unilorin.edu.ng
http://creativecommons.org/licenses/by-sa/4.0/

Balogun et al. (Halstead’s complexity measure ….)

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

142

The work on developing new sorting methods is still ongoing. The concept of big numbers emerged

due to the increased development of huge data. Traditional sorting procedures can be used to sort

thousands of records, either sorted or unsorted. In some circumstances, the intricacies can be

overlooked because of the minor change in execution time. However, suppose the data is huge, and

the execution or processing time of billions or trillions of records is significant. In that case, we cannot

disregard the complexity of the problem, so an optimal sorting strategy is required (Shabaz & Kumar,

2019). Many writers have attempted to increase the performance of sorting algorithms in data

structures, according to Balogun (2019). To overcome the issues with the merge sort algorithm,

numerous alternatives have been investigated.

Merge Sort Algorithm

The DAC (Divide and Conquer) concept is used in the Merge sort algorithm, which is an external

sorting strategy. For example, it divides a list of records into two smaller units, compares each element

to an adjacent list, and then recursively sorts the two pieces or units of data sets, merging and sorting

all of the entries in the list. A merge sort, in theory, splits the disorder list into n elements subunits or

lists, comparing every aspect of the list until every single element is observed sorted (Irfan et al.,

2018). Merge sorting is also known as a divide and conquer method of sorting features, and it is based

on this method (Varshney & Yadav, 2014).

One of the most efficient sorting algorithms is merge sort. It operates on the divide-and-conquer

premise. Merge sort continuously cuts down a list into numerous sub-lists until each sub-list contains

only one entry, then merges those sub-lists into a sorted list. 2020 (Interviewbit). The Fusion Merge

Sorting Step Every recursive algorithm relies on a base case and the ability to mix results from several

base cases. The merge sort is no exception. The merge step is the most critical aspect of the merge

sort algorithm. The merge step solves the problem of combining two sorted lists (arrays) into a single

large sorted list (array). The technique keeps track of three-pointers: one for each of the two arrays

and one for the final sorted array's current index (Programiz, 2020).

Merge Sort is quite fast and has a time complexity of O(n*log n). It is also a stable sort, which means

the "equal" elements are ordered in the same order in the sorted list. The total time for the merge sort

function will become n(log n + 1), which gives us a time complexity of O(n*log n). Worst Case Time

Complexity [Big-O]: O(n*log n) Best Case Time Complexity [Big-omega]: O(n*log n) Average

Time Complexity [Big-theta]: O(n*log n) Space Complexity: O(n).

The time complexity of Merge Sort is O(n*Log n) in all the 3 cases (worst, average, and best) as

merge sort always divides the array into two halves and takes linear time to merge two halves. It

requires an equal amount of additional space as the unsorted array. It is the most effective method for

sorting Linked Lists (Programiz, 2020). To sort a file of n records, the external merge sort algorithm

described above requires logn passes. As a result, each record must be read and written to disk logn

time. By noting that merge sort is not required for tiny runs, the number of passes can be greatly

decreased (Open DSA, 2019). Looked at the time and space complexity of five different sorting

algorithms: bubble sort, choosing sort, insertion sort, merge sort, and rapid sort (Rajagopal &

Thilakavalli, 2016). Based on the experiments, several findings were produced from aspects of the

input sequence. They found that insertion sort or selection sort performs well when the data is

minimal, and insertion sort or bubble sort performs well when the sequence is in the ordered form.

Their research resulted in a study of sorting algorithms and their attributes.

The quick sort and merge sort algorithms have been widely used for sorting, according to (Taiwo et

al., 2020). However, determining which is the most efficient has always been a contentious issue

because most of the existing literature has compared these algorithms using machine-dependent

factors such as computational complexity. Still, few have used machine-independent factors such as

internal/external sorting, algorithm c, and algorithm d. Their research attempted to contribute to this

conversation by considering both machine-dependent and independent aspects. Their implementation

Balogun et al. (Halstead’s complexity measure ….)

 143

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

was done in the MATLAB programming environment, with the internal system clock set to keep

track of the sorting time.

The Merge Step of Merge Sort

Every recursive algorithm relies on a base case and the ability to mix results from several base cases.

The merge sort is no exception. The merge step is the most critical aspect of the merge sort algorithm.

The merge step solves the problem of combining two sorted lists (arrays) into a single large sorted

list (array). The technique keeps track of three-pointers: one for each of the two arrays and one for

the final sorted array's current index (Programiz, 2020). Merge Sort is a fast algorithm with an

O(n*log n) time complexity. It's also a stable sort, meaning the "equal" entries in the sorted list are in

the same order.

Worst Case Time Complexity [Big-O]: O(n*log n)

Best Case Time Complexity [Big-omega]: O(n*log n)

Average Time Complexity [Big-theta]: O(n*log n)

Space Complexity: O(n)

Merge Sort has an O(n*Log n) time complexity in all three cases (worst, average, and best) because

it splits the array into two halves and merges them in linear time. It takes up the same amount of space

as the unsorted array. It is the most effective method for sorting Linked Lists (Programiz, 2020). To

sort a file of n records, the external merge sort algorithm described above requires logn passes. As a

result, each record must be read and written to disk logn time. By noting that merge sort is not required

for tiny runs, the number of passes can be greatly decreased (Open DSA, 2019).

Sample Algorithm for the Mergesort on an array [r] (GeeksforGeeksmergesort, 2020)

MergeSort(arr[], l, r)

If r > l

Step 1 Find the middle point to divide the array into two halves:
 middle m = (l+r)/2

 Step 2 Call mergeSort for first half:

 Call mergeSort(arr, l, m)
 Step 3 Call mergeSort for second half:

 Call mergeSort(arr, m+1, r)

 Step 4 Merge the two halves sorted in step 2 and 3:

 Call merge(arr, l, m, r)

Modified Merge sort

In the workings of the modified merge sort algorithm, the sample array is broken down into ‘n’ large

parts. Each part, starting from the first part, ‘1’, is sorted using the quick sort algorithm. This is

repeated for all the other parts in ‘n’. When all the parts in the array [arr 1, n] have been sorted, they

are combined using the merge sort algorithm. This modified merge sort algorithm works on the idea

of preventing the merge sort from breaking down the array into the smallest unit before sorting can

take place (Balogun, 2021).

Sample Algorithm for the Modified Merge sort on an array [r] (Balogun, 2019).

Step 1 – Split the array [r] into [n] parts
Step 2 – Select part [1]

Step 3 − Choose the highest index value as pivot in part [1]

Step 4 − Take two variables to point left and right of the list, excluding the pivot

Step 5 − left points to the low index
Step 6 − right points to the high

Step 7 − while the value at left is less than the pivot, move right

Step 8 − while the value at right is greater than the pivot move left
Step 9 − if both step 5 and step 6 are not matched, swap left and right

Balogun et al. (Halstead’s complexity measure ….)

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

144

Step 10 − if left ≥ right, the point where they met is the new pivot
Step 11– if all items in [1] are sorted select next part [1+p]

Step 12 – go to Step 3

Step 13 – If all parts [arr 1, n] are sorted then go to next step else go to step 11

Step 14 Find the middle point to divide the parts [arr 1, n] into two halves: middle m = (l+n)/2
Step 15 Call mergeSort for first half: Call mergeSort(arr, l, m)

Step 16 Call mergeSort for second half: Call mergeSort(arr, m+1, n)

Step 17 Merge the two halves sorted in step 15 and 16: Call merge(arr, l, m, n)

METHODS

The methodology used in comparing the two external sorting methods (Merge sort and Modified

Merge sort) lies in implementing the two algorithms using C. The operators and operands in each C

program are extracted, and the result is tabulated. These operators and operands are then substituted

in Halstead’s metrics to obtain their values.

Operators and Operands

n1 = Number of distinct operators.

n2 = Number of distinct operands.

N1 = Total number of distinct operators.
N2 = Total number of distinct operands.

Halstead Metrics

I. Halstead Program Length–The number of distinct operators and the number of distinct operands. N =

N1+N2

II. Halstead Vocabulary–The number of unique operators and unique operand occurrences. n = n1+n2

III. Program Volume–Proportional to program size, represents the size, in bits, of space necessary for

storing the program. This parameter is dependent on specific algorithm implementation. The properties

V, N, and the number of lines in the code are shown to be linearly connected and equally valid for

measuring relative program size.

V = Size*(log2 Vocabulary) = N*log2(n)

IV. Program Difficulty–This parameter shows how difficult it is to handle the program.

D = (n1/2)*(N2/n2), D = 1/L/

As the volume of program implementation increases, the program level decreases, and the difficulty

increases. Thus, programming practices such as redundant operands or the failure to use higher-level

control constructs will increase the volume and difficulty.

V. Programming Effort–Measures the mental activity needed to translate the existing algorithm into

implementation in the specified program language.

E = V/L = D*V = Difficulty*Volume

VI. Intelligence Content–Determines the amount of intelligence presented (stated) in the program. This

parameter measures program complexity independently of the program language in which it was

implemented.

I = V/D

Merge Sort

Table 1 illustrates the number of operators and operands for merge sort, and Table 2 illustrates the

number of operators and operands for modified merge sort, respectively.

Balogun et al. (Halstead’s complexity measure ….)

 145

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

Table 1. Number of operators and operands for merge sort

Operators
Number of

Occurence
Operand

Number of

Occurence

{} 14 STAThread 1

[] 29 K 11

Void 3 Y 2

Char 2 Result 3

= 33 Filename 3

; 51 Text 3

Do 1 Null 1

DialogResult 2 fileChooser 1

String 4 DialogResult.OK 1

() 38 File.ReadAllLines 1

OpenFileDialog 2 System.Environment.Exit 1

New 5 0 8

FileChooser.FileName 1 N 7

If 3 text.Length 1

== 4 X 4

Else 2 J 9

Int 22 FileChooser.ShowDialog 1

Foreach 1 S 2

int.parse 1 Watch 3

Stopwatch 2 Sort 4

For 3 I 21

< 8 Time 1

\n 3 1000 1

Execution 1 Y 2

Float 1 myArray 4

watch.ElapsedMilliseconds 1 myArray.Length 1

/ 3 1 1

Try 1 2 1

char.parse 1 L 8

Catch 1 R 4

While 4 leftArray 9

|| 1 rightArray 9

Return 1 System.exception 1

- 1 Merge 2

+ 1 OriginalArray 5

, 6 leftArray.Length 1

&& 1 rightArray.Length 1

<= 1

++ 12

n1 =39 N1 = 271 n2 = 37 N2 = 139

Modified Merge Sort

Table 2. Number of operators and operands for modified merge sort

Operators
Number of

Occurrences
Operands

Number of

Occurrences

{} 19 STAThread 1

[] 36 Response 5

Void 4 Y 3

String 4 Result 5

Char 2 Filename 4

Balogun et al. (Halstead’s complexity measure ….)

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

146

Operators
Number of

Occurrences
Operands

Number of

Occurrences

= 39 Text 4

; 63 Null 1

Do 2 fileChooser 3

DialogResult 2 fileChooser.ShowDialog 1

OpenFileDialog 2 fileChooser.FileName 1
New 5 DialogResult.OK 1

() 46 System.Environment.Exit 1

If 4 0 10

== 3 N 5

file.ReadAllLines 1 text.length 1

Else 2 X 5

Int 34 J 9

Foreach 1 S 2

++ 14 L 7

Int.parse 1 1 5

+ 4 2 1

/ 2 X1 6
For 4 X2 6

< 8 I 26

Stopwatch 2 X1.Length 2

- 4 X2.Length 2

Float 1 Watch 6

Try 1 Quicksort 5

Char.parse 1 Merge 2

Catch 1 x.Length 1

While 4 Watch.elapsedMilliseconds 1

|| 1 1000 1

>= 1 Console.readline 1
Return 2 System.Exception 1

<= 2 A 14

&& 1 Start 8

 End 8

 Pindex 8

 Partition 2

 Pivot 2

 Temp 2

 B 5

 OriginalArray 5

 leftArray 5

 rightArray 5
 K 6

 R 2

n1 = 36 N1 = 323 n2 = 47 N2 = 207

RESULTS AND DISCUSSION

Merge sort

(1) Program Length (N) = N1 + N2 = 271 + 139 = 410

(2) Program Vocabulary (n) = n1 + n2 = 39 + 37 = 76
(3) Program Volume (V) = N log2 n =410log276 = 2561.65 bits

(4) Program Difficulty (D) = n1/2 * N2/n2 = 39/2 * 139/37 = 14097/74 = 190.5

(5) Programming Effort (E) = D * V = 190.5 * 2561.65 = 487994.325
(6) Intelligence Content (I) = V/D = 2561.65/190.5 = 13.48

Balogun et al. (Halstead’s complexity measure ….)

 147

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

Modified Mergesort

(1) Program Length (N) = N1 + N2 = 323 + 207 = 530
(2) Program Vocabulary (n) = n1 + n2 = 36 + 47 = 80

(3) Program Volume (V) = N log2 n = 530log280 =511.12 bits

(4) Program Difficulty (D) = n1/2 * N2/n2 = 36/2 * 207/47 = 7452/94 = 79.2766
(5) Programming Effort (E) = D * V = 79.2766 * 511.12 = 40519.85

(6) Intelligence Content (I) = V/D = 511.12/79.2766 =6.45

Table 3, Table 4, Table 5, and Table 6 represent Program length, Program vocabulary, Program

volume, and Program difficulty. Figures 1 to 6 show the merge sort has a smaller program length

and program vocabulary when compared to the modified merge sort.

Table 3. Program length

Mergesort Modified Mergesort

410 530

 Figure 1. Program length

Table 4. Program vocabulary

Mergesort Modified Mergesort

76 80

Figure 2. Program length

MergesortModified
Mergesort

Program Length

MergesortModified
Mergesort

Program Vocabulary

Balogun et al. (Halstead’s complexity measure ….)

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

148

Table 5. Program volume

 Mergesort Modified Mergesort

2561.65 511.12

Figure 3. Program volume

Table 6. Program difficulty

 Mergesort Modified Mergesort

190.5 79.2766

Figure 4. Program length

Table 7. Programming effort

 Mergesort Modified Mergesort

487994.325 40519.85

Mergesort

Modified
Mergesort

Program Volume

Mergesort

Modified
Mergesort

Program Difficulty

Balogun et al. (Halstead’s complexity measure ….)

 149

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

Figure 5. Program length

Table 8. Intelligence content

 Mergesort Modified Mergesort

13.48 6.45

Figure 6. Program length

However, the bit size of the program volume, the metric used in measuring space efficiency, indicates

that the modified mergesort algorithm is far more efficient than the mergesort algorithm. The Halstead

metrics result also shows that the program difficulty and effort required for mergesort implementation

far outweigh that of the modified mergesort. This implies that it is much more difficult with the more

considerable effort required in using the mergesort algorithm when compared to the use of the

modified merge sort algorithm. Thus implying that the modified merge sort is more efficient than the

mergesort algorithm. However, the measure of the intelligence indicates that the merge sort is about

twice as intelligent as the modified merge sort.

CONCLUSION

The mergesort has always been a popular and efficient external sorting method. However, a

significant disadvantage of this algorithm lies in breaking down the data to its smallest part before

sorting can be implemented. This led to its modification in the modified merge sort algorithm. This,

Mergesort

Modified
Mergesort

Program Effort

Mergesort

Modified
Mergesort

Intelligence Content

Balogun et al. (Halstead’s complexity measure ….)

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

150

therefore, compared the efficiency of the two sorting algorithms using Halstead’s metrics. The result

shows that the modified merge sort algorithm is more efficient regarding program volume,

programming difficulty, and effort than the merge sort. But, the mergesort carries the day in terms of

the intelligence content. The findings of the comparison between the standard merge sort and the

modified merge sort algorithms using Halstead's metrics revealed that the necessity to break down

data into its most minor parts in the merge sort algorithm is a significant weakness, primarily due to

its high memory requirements, making it less suitable for systems with limited memory resources.

The modified merge sort outperformed the standard merge sort regarding program volume,

programming difficulty, and programming effort. However, the usual merge sort retained an

advantage regarding intelligence content, indicating its potential in more complex or versatile

applications. Further research opportunities lie in empirical testing to validate these findings, defining

more precise criteria for algorithm evaluation, exploring their performance in specific application

contexts with varying data types and sizes, including time and space complexity measurements, and

discussing practical implications to aid decision-making in choosing the appropriate sorting algorithm

for specific needs and resource constraints.

REFERENCES

Balogun, G. B. (2019). A modified linear search algorithm. African Journal of Computer Science & ICT, 12(2),

43-54.

Balogun, G. B., Olanrewaju, B. A., Awotunde, J. B., Oladipo, I. D., & AbdulRaheem, M. (2021). Evaluating

the time efficiency of a modified merge sort algorithm. Bulletin of the Science Association of Nigeria.

32. 141-159.

Diego, L. Y. (2020). Time complexity: how to measure the efficiency of algorithms. Retrieved February 2022

from https://www.kdnuggets.com/2020/06/time-complexity-measure-efficiency-algorithms.html

GeeksforGeeks (2020). External sorting. Retrieved May 2020 from https://www.geeksforgeeks.org/external-

sorting

GeeksforGeeks. Merge sort. Retrieved May 2020 from https://www.geeksforgeeks.org/merge-sort

Hariprasad, T., Vidhyagaran, G., K. Seenu, K., Thirumalai, C. (2017). Software complexity analysis using

Halstead metrics. In International Conference on Trends in Electronics and Informatics ICOEI 2017,

Tirunelveli, India. doi: 10.1109/ICOEI.2017.8300883

Hassan, A. A., Kvasnikov, A. A., Klyukin, D. V., Ivanov, A. A., Demakov, A. V., Mochalov, D. M., &

Kuksenko, S.P. (2023). On modeling antennas using mom-based algorithms: Wire-grid versus surface

triangulation. Algorithms, 16(4), 200. doi: 10.3390/a16040200

InterviewBit. Merge sort algorithm. Retrieved May 2020 from https://www.interviewbit.com/tutorial/merge-

sort-algorithm

Irfan, A., Haque, N., Imran, K., Ameen, M.C., & Malook, M.R. (2018). Performance comparison between

merge and quick sort algorithms in data structure. International Journal of Advanced Computer Science

and Applications (IJACSA), 9(11), 192-195. doi: 10.14569/IJACSA.2018.091127

Maushumi, L. & Uzzal S. (2019). Complexity assessment based on UML-activity diagram. International

Journal of Recent Technology and Engineering (IJRTE), 8(2), 6117-6122.

Mohammad S. & Ashok K. (2019). A novel sorting technique for large-scale data. Journal of Computer

Networks and Communications, 1(1), 1-7.

Open DSA (2019). CS 3. Data structures and algorithms. External sorting. Retrieved May 2020 from

https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/ExternalSort.html

Programiz. (2020). Merge sort algorithm. Retrieved May 2020 from https://www.programiz.com/dsa/merge-

sort

Rabiu, A. M., Garba, E. J., Baha, B. Y., & Mukhtar, M. I. (2021). Comparative analysis between selection sort

and merge sort algorithms. Nigerian Journal of Basic and Applied Sciences, 29(1), 43-48. doi:

10.4314/njbas.v29i1.5

https://www.kdnuggets.com/2020/06/time-complexity-measure-efficiency-algorithms.html
https://www.geeksforgeeks.org/external-sorting
https://www.geeksforgeeks.org/external-sorting
https://www.geeksforgeeks.org/merge-sort
https://doi.org/10.1109/ICOEI.2017.8300883
https://doi.org/10.3390/a16040200
https://www.interviewbit.com/tutorial/merge-sort-algorithm
https://www.interviewbit.com/tutorial/merge-sort-algorithm
https://doi.org/10.14569/IJACSA.2018.091127
https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/ExternalSort.html
https://www.programiz.com/dsa/merge-sort
https://www.programiz.com/dsa/merge-sort
https://doi.org/10.4314/njbas.v29i1.5
https://doi.org/10.4314/njbas.v29i1.5

Balogun et al. (Halstead’s complexity measure ….)

 151

ISSN 2685-4244 Jambura Journal of Informatics Vol. 5, No. 2, pp. 141-151

Rajagopal, D., & Thilakavalli, K. (2016). Different sorting algorithm’s comparison based upon the time

complexity. International Journal of U- and e-Service, Science and Technology, 9(8), 287–296. doi:

10.14257/ijunesst.2016.9.8.24

Senan, S., & Sevgen, S. (2017). Measuring software complexity using neural networks. Journal of Electrical

and Electronics Engineering, 17(2), 3503-3508.

Shabaz, M., & Kumar, A. (2019). SA sorting: A novel sorting technique for large-scale data. Journal of

Computer Networks and Communications. doi: 10.1155/2019/3027578

Sharma, C. B. Panwar and R. Arya (Diego, 2022). High power pulsed current laser diode driver. In

International Conference on Electrical Power and Energy Systems (ICEPES), Bhopal, India, 1(1), 120-

126, doi: 10.1109/ICEPES.20A

Taiwo, O. E., Christianah, A. O., Oluwatobi, A. N., & Aderonke, K. A. (2020). Comparative study of two

divide and conquer sorting algorithms: Quicksort and mergesort. Procedia Computer Science, 171,

2532-2540. doi: 10.1016/j.procs.2020.04.274

Yadav, R., & Varshney, K. (2014). Brief study about the variation of complexities in algorithmic merge sort.

International Journal of Advanced Research in Computer Science and Software Engineering, 4(2), 874-

878.

https://doi.org/10.14257/ijunesst.2016.9.8.24
https://doi.org/10.14257/ijunesst.2016.9.8.24
https://doi.org/10.1155/2019/3027578
https://doi.org/10.1109/ICEPES.20A
https://doi.org/10.1016/j.procs.2020.04.274

