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ABSTRACT

Air temperature is an important data for several sectors. The demand of fast, exact and
accurate forecast on temperature data is getting extremely important since it is useful for
planning of several important sectors. In order to forecast mean daily temperature data at
1st and 2nd Perak BMKG Station in Surabaya, this study used the univariate method, ARIMA
model and multivariate method, VARIMA model with outlier detection. The best ARIMA
model was selected using in-sample criteria, i.e. AIC and BIC. While for VAR model, the
minimum information criterion namely AICc value was considered. The RMSE values of
several forecasting horizons of out-sample data showed that the overall best model for mean
daily temperature at 1st and 2nd Perak Station was the multivariate model, i.e. VARX (10,1)
with four outliers incorporated in the model, indicated that it was necessary to consider the
temperature from the nearest stations to improve the forecasting performance. This study
recommends performing the overall best model only for short term forecasting, i.e. two weeks
at maximum. By using the one week-step ahead and one day-step ahead forecasting scheme,
the forecasting performance is significantly improved compared to default the k-step ahead
forecasting scheme.
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1. Introduction

One important element in weather information is temperature data, i.e. minimum,
maximum, and average temperatures. Temperature data in a day is very fluctuating.
The difference in temperature conditions in a day is affected by changes in the intensity
of the sun’s heat that reaches the earth’s surface [1]. The recent assessment studies on
the impact of climate change indicated that temperature changes affect several sectors
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directly i.e. water resources, agriculture, vegetation and tourism [2]. Moreover, the
temperature change also plays important role for transportation, industry, and
electricity. For example, temperature data is needed by the air transportation sector
because the temperature is strongly related to air pressure and wind speed which can
affect the flight. The temperature condition also affects the demand and supply of
electricity. Temperature conditions that undergo continuous changes are one indicator
of climate change that also can affect the environment and health.

Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) is
required to provide fast, precise and accurate temperature data. In addition, it is also
necessary to have temperature forecast data for the next few days that are useful for
planning of several important sectors. One of the most commonly used forecasting
methods is the Autoregressive Integrated Moving Average (ARIMA) method
introduced by Box, et.al [3]. This method is known as the univariate method which
states that forecasting a variable is only done by relying on the past information of a
variable. This forecasting process seems not suitable with actual condition since the
temperatures between stations have highly intensity of relationship that can affect each
other.

Therefore, in the forecasting process of temperatures on each station, it is necessary to
consider the temperature from nearest station called forecasting with a multivariate
method. The multivariate methods that are widely used for forecasting are Vector
ARIMA (VARIMA). The VARIMA method can explain the effects between several
variables simultaneously. By taking into account the effect of other variables, it is
expected that the forecast result can be more accurate.

The previous study, Machmudin and Ulama [4] used ARIMA and Artificial Neural
Network (ANN) to forecast daily temperature data at 2nd Perak Station, Surabaya.
Using the Mean Absolute Percentage Error (MAPE) to measure forecasting
performance, the best model to forecast temperature is ANN model. Other study by
Ustaoglu, et.al [2] also performed ANN algorithm with three different method, i.e.
radial basis function (RBF), feed-forward back propagation (FFBP) and generalized
regression neural network (GRNN), to forecast daily mean, maximum and minimum
temperature of Geyve and Sakarya, Turkey. Study from Liu, et.al [5] utilized VAR model
to forecast three important weather variables, i.e. temperature, solar radiation and wind
speed, for 61 cities around the United States. The results showed that VAR model was
suitable for short–term forecasting. The study from Naz [6], performed ARIMA,
Exponential Smoothing (ETS), cubic splines and VAR model to forecast maximum daily
temperature data at Umea, Swedish. The VAR model did not improve the forecast
significantly and ARIMA model was the best model to forecast one-step ahead
maximum daily temperature data.

Based on this background, this study seeks to assess the forecasting performance of
daily mean temperature data at 1st and 2nd Perak Station, Surabaya using the univariate
method, i.e. ARIMA and also multivariate method, i.e. VARIMA, with outlier detection.
The outlier detection needs to be performed since the outlier that usually exist in the
weather data can greatly affect forecasting accuracy [7]. The forecasting performance for
in-sample and several horizons of out-sample data from the two models are compared.
The mean-based forecasting also employed as a benchmark to calculate RMSE reduction
that produced by each model. From the results of these performance comparison, the
overall best model is determined. Finally, using the overall best model, this study
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forecast the out-sample data using three different schemes, i.e. the default k-step ahead,
one week-step ahead and one day-step ahead, to observe the improvement of the
forecasting performance.

2. Methods
2.1. Source of Data

This study utilizes two series of secondary data, i.e. the daily mean temperature data at
1st and 2nd Perak Station, Surabaya from January 1st, 2017 to October 31st, 2018 (669
observations) obtained from Indonesian Meteorological, Climatological, and
Geophysical Agency (BMKG).

2.2. Analytical Procedures

The analytical procedures used in this study are: first, check for missing values in the
data and perform imputation for missing values data. Second, divide the data at 1st and
2nd Perak Station into in-sample data (training data), from January 1st, 2017 to August
31st, 2018 (608 observations), for modeling and out-sample data, from September 1st,
2018 to October 31st, 2018 (61 observations), for forecasting and selecting the overall best
model.

Next, check for stationarity in variance and mean condition for each of the in-sample
data. The data must meet the stationary in variance and mean condition before modeling
process. If the lambda value λ< 1, then the data is not stationary in variance hence needs
to be transformed using Box-Cox’s power transformation [8]. Non-stationary in mean
indicated by significant plot of Autocorrelation Function (ACF) or Partial Autocorrelation
Function (PACF) that decays very slowly hence the differencing process must be applied
to the data.

Perform ARIMA method for each in-sample data. The general form of ARIMA with p
order Autoregressive (AR) process, q order Moving Average (MA) process and d
differencing level or ARIMA (p, d, q) according to [3] is as follows:

φp (B)
(

1−Bd
)

Zt=θq(B)at (1)

where
φp (B) =

(
1−φ1B−φ2B2− · · · −φpBp) ,

θq (B) =
(
1−θ1B−θ2B2− · · · −θqBq) ,

and at with E (at) = 0, Var (at) = σ2
a , and Cov (at, at+k) = 0, k 6=0. The model

identification process performed by observing the ACF and PACF plot of stationary data
is applied as described by Wei [9]. Select alternative ARIMA models that satisfy three
following condition, i.e. all parameters in the models are significant, white noise and
normally distributed residuals. Residuals which are not white noise or normally
distributed according to the Portmanteau and Kolmogorov-Smirnov test, respectively,
will be handled with ARIMAX model. The violation of assumptions usually caused by
the presence of outliers in the data. These outliers need to be incorporated in the model
to make residuals white noise or normally distributed. There are two type of outliers,
i.e. additive outlier (AO) and innovational outlier (IO) [9]. An ARIMA model with AO

JJoM | Jambura J. Math. 106 Volume 4 | Issue 1 | January 2022



T. Purwa and B. Ngwarati

is define as

Zt = ωI(T)t +
θq(B)
φp (B)

at (2)

where I(T)t = 1, t = T and I(T)t = 0, t 6=T. While, an ARIMA model with IO is define as

Zt =
θq(B)
φp (B)

(
ωI(T)t + at

)
(3)

where I(T)t = 1, t≥T and I(T)t = 0, t<T. Generally, the ARIMA model with k several
outliers is define as

Zt =
k

∑
j=1

ωjvj(B)I(T)t +
θq(B)
φp (B)

at (4)

where vj (B) = 1 for an AO and vj (B) = θq(B)
φp(B) for an IO at time t = Tj. The best ARIMA

or ARIMAX model is chosen using in-sample criteria, i.e. AIC and BIC.

Next, perform VARIMA method for both in-sample data. This multivariate time series
model has an advantage to explain the relationships between multiple sets of time series
data. According to Wei [9] and Tsay [10], the general model of VARIMA(p, d, q) is as
follows:

Φp (B) D (B) Zt=θq (B) at (5)

where Zt =
[

Z1,t Z2,t · · · Zm,t
]′, at =

[
a1,t a2,t · · · am,t

]′, diagonal matrix of
differencing operator D (B) with diagonal values (1− B)d1 , (1− B)d2 , . . . , (1− B)dm ,
Φp (B) = 1−Φ1B−Φ2B2 − · · · −ΦpBp, and θq (B) = 1− θ1B− θ2B2 − · · · − θqBq with

Φp=


φp 11 φp 12 · · · φp 1m
φp 21 φp 22 · · · φp 2m

...
...

. . .
...

φp m1 φp m2 . . . φp mm


and

θq=


θq 11 θq 12 · · · θq 1m
θq 21 θq 22 · · · θq 2m

...
...

. . .
...

θq m1 θq m2 . . . θq mm


The next process is model identification or determine the number of lagged values
based on Akaike Information Criterion (AIC) produced by VARIMA model as discussed
by Lutkepohl [11]. In the VARIMA model estimation process, non-significant
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estimations of the parameters can be restricted (assumed as constant value of 0). Then
proceed the diagnostic checking to ensure that the residuals at are white noise according
to the corrected AIC (AICc) value and satisfy multivariate normal distribution
assumptions using squared generalized distance [12], i.e. d2

t = (at − a)′ Σ−1 (at − a),
with at is n×m matrix of residuals and Σ is variance covariance matrix of residuals. The
m-variate normality is indicated if the number of d2

t≤χ2
(0.5,m) is at least 50% and the

chi-square plot of ordered d2
t vs. χ2

((n−t+0.5)/n,m) is reasonably straight compared to
diagonal line (slope 1). If the residuals are not white noise or follow multivariate normal
distribution then perform outlier detection for multivariate data using the T2 Hotelling
statistics [13], that has same formula with the d2

t , as follows

T2
i = (at − a)′ Σ−1 (at − a) (6)

If T2
i is below the lower control limit (LCL), 0 or greater than upper control limit (UCL),

χ2
(α,m), with m is number of time series data, then the i-th observation are categorized as

outliers. In the VARIMAX model, these outliers are incorporated as exogenous variable,
i.e. as dummy variables, with the general model of VARIMAX (p, q, s) as follow

Φp (B) D (B) Zt =
s

∑
j=0

β jXt−j + θq (B) at (7)

where β j is m×r matrix of dummy variable’s parameter and Xt−j is r×1 vector of dummy
variable, with r is number of outliers.

Using the best ARIMA and VARIMA models for both in-sample data from the previous
procedures, forecasting for several horizons ahead up until two months, i.e. September
and October, would be performed then the overall best model for daily mean
temperature data at 1st and 2nd Perak Station are selected based on RMSE. We also
calculate the reduction of RMSE for each data by using ARIMA and VARIMA method
compared to mean-based forecasting as a benchmark. The final procedure is the
forecasting performance inspection of the overall best model from different schemes, i.e.
k-step ahead, one week-step ahead and one day-step ahead forecasting.

3. Results and Discussion
3.1. Imputation for Missing Values

There were no missing values in the daily mean temperature data at 1st Perak Station,
however there were 31 missing values (January 1st until 31st, 2017) in the data at 2nd

Perak Station. Since these missing values are appear in the beginning of the in-sample
data so we involved a previous year (2016) data for imputation process using simple
Moving Average [14]. The time series plot for daily mean temperature data at 1st and 2nd

Perak Station are presented in Figure 1 (a) and (b), respectively.

3.2. ARIMAX Model

The condition of stationarity in variance for each data is checked by value of λ from Box
Cox. The rounded value of λ for mean temperature data at 1st and 2nd Perak Station were
4 and 3, respectively. The 95% confidence level of λ for mean temperature data at 1st

Perak Station did not contain 1, indicated non-stationary condition. But transformation

JJoM | Jambura J. Math. 108 Volume 4 | Issue 1 | January 2022



T. Purwa and B. Ngwarati

(a)

(b)
Note: red line shows imputed values

Figure 1. Time series plot of daily mean temperature data at 1st (a) and 2nd (b)
Perak station

was not performed since it would increase the variance of the data. For the 2nd Perak
Station, the 95% confidence level of λ contain 1 then the data already meet stationary in
variance condition.

The ACF and PACF plot of daily mean temperature at 1st and 2nd Perak Station (Figure 2
(a) and (b)) show that the data do not meet stationarity in mean condition hence we need
to perform regular differencing (d= 1) to the data.

After regular differencing, the ACF and PACF plot presented in Figure 3 (a) and (b) have
indicated stationarity in mean condition. According to these ACF and PACF plot, we can
identify the ARIMA model and estimate the parameters.

For daily mean temperature data at 1st Perak Station, there are three ARIMA models that
have all significant parameters in the models with α= 0, 05, white noise until lags 48 and
normally distributed residuals based on Kolmogorov-Smirnov test as presented in Table
1.

The best ARIMA model for daily mean temperature data at 1st Perak station was model
that has minimum AIC and BIC, i.e. ARIMA (0,1,2) with the following equation,

(1− B) Ż1,t= (1− 0.5006B− 0.2863B2)a1,t (8)

or
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(a)

(b)

Figure 2. ACF and PACF plot of daily mean temperature data at 1st (a) and 2nd

(b) Perak station

(a)

(b)

Figure 3. ACF and PACF plot of daily mean temperature data at 1st (a) and 2nd

(b) Perak station, after regular differencing (d= 1)
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Table 1. AIC and BIC values of ARIMA models for daily mean temperature at
1st Perak station

Model AIC BIC
ARIMA (0,1,2) 1332.851* 1341.668*

ARIMA (2,1,[2]) 1335.107 1348.333
ARIMA (1,1,1) 1333.234 1342.051

Note: *) The Best Model

Z1,t = Z1,t−1 + a1,t − 0.5006a1,t−1 − 0.2863a1,t−2 (9)

For daily mean temperature data at 2nd Perak Station, there were 5 ARIMA models that
have all of the significant parameters and white noise residuals however all of these
residuals were not normally distributed. Then modeling using ARIMAX model is
performed. There are five alternative models obtained in Table 2.

Table 2. AIC and BIC values of ARIMAX models for daily mean temperature at
2nd Perak station

Model Outlier AIC BIC
ARIMA (7,1,0) AO = 149, 422, 322, 309, 85, 426, 77, 98, 328, 551 1111.119 1208.107

IO = 336, 317, 278, 364, 357
ARIMA (0,1,2) AO = 149, 322, 422, 85, 309, 364, 328 1142.766* 1195.668

IO = 317, 336, 270
ARIMA (2,1,1) AO = 149, 322, 422, 364, 85, 309, 328 1144.279 1201.59

IO = 317, 336, 270
ARIMA (2,1,[2]) AO = 149, 322, 364, 309, 85, 328, 98 1152.422 1209.733

IO = 317, 336, 270
ARIMA ([1,2,5],1,[2]) AO = 149, 322, 422, 85, 309, 328 1148.765 1210.484

IO = 317, 336, 270, 552
Note: *) The Best Model

The best ARIMAX model for daily mean temperature data at 2nd Perak station is ARIMA
(0,1,2) with 10 outliers with the following equation,

Z2,t = −2, 2983I149
2,t + 2, 1403I322

2,t − 2, 1226I422
2,t − 1, 8916I85

2,t− 1, 8149I309
2,t − 1, 8204I364

2,t (10)

−1, 7592I328
2,t +

(
1− 0, 4415B−0, 3634B2)

(1−B)
(−2, 4066I(317)

2,t +1, 6972I336
2,t +1, 5944I270

2,t + a2,t)

3.3. VARIMAX Model

In the model identification process, the VARIMA models are conducted for
p = 0, 1, 2, . . . , 10 and q = 0, 1, 2, . . . , 5 then the AICc values are compared. The model
with minimum AICc value, i.e. −2.6489, is obtained by VARIMA model with p = 9 and
q = 0 or VAR (9) model. Next, VAR (9) model is estimated and non-significant
parameters are restricted one by one until all significant parameters remain in the
model.

According to the d2
i value, the residuals follow multivariate normal distribution. Also
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white noise checking of residuals is performed by modeling the vector of residuals from
restricted VAR (9) model and observing the minimum AICc value. When the minimum
AICc values is not produced from model with p = q = 0, the residuals are not white
noise. This condition is caused by the presence of outliers observed from the outliers
detection using T2 Hotelling statistics that there are 23 outliers with the T2

i values more
than the UCL, χ2

(0.99,2) = 9.2103 as presented in Figure 4.

Figure 4. Plot of T2 Hotelling statistics of the residuals

In the first iteration, four biggest outliers, i.e. 214th, 48th, 13rd, and 551st observation,
are incorporated in the model. The VARX (10,1) model has the minimum AICc in the
model identification process. After estimating the model, the restriction for the non-
significant parameters are performed. From the modeling of the residuals of restricted
model, the minimum AICc value is −2.9099 produced from model with p = q = 0
indicating that the residuals are white noise. These residuals also follow multivariate
normal distribution since 57.45% of its d2

i value are less than or equal to χ2
(0.5,2) = 1.3863

and also have reasonable straight pattern in Figure 5.

The final estimation model is VARX (10,1) model with 4 outliers as follow:

(
1−Φ1B−Φ2B2 − · · · −Φ10B10

)
(1− B) Zt = β0Xt + β1Xt−1 + at (11)

or

Zt = (I + Φ1) Zt−1 + (Φ2 −Φ1) Zt−2 + (Φ3 −Φ2) Zt−3 + (Φ4 −Φ3) Zt−4

+ (Φ5 −Φ4) Zt−5 + (Φ6 −Φ5) Zt−6 + (Φ7 −Φ6) Zt−7 + (Φ8 −Φ7) Zt−8 (12)

+ (Φ9 −Φ8) Zt−9 + (Φ10 −Φ9) Zt−10 −Φ10Zt−11 + β0Xt + β1Xt−1 + at

or

[
Z1,t
Z2,t

]
=

[
0.2565 0.2916

0 0.5632

] [
Z1,t−1
Z2,t−1

]
+

[
0.0598 −0.0753

0 −0.0506

] [
Z1,t−2
Z2,t−2

]

JJoM | Jambura J. Math. 112 Volume 4 | Issue 1 | January 2022



T. Purwa and B. Ngwarati

Figure 5. Chi-square plot of residuals squared generalized distance

+

[
0.0999 −0.0385
−0.1158 0.2217

] [
Z1,t−3
Z2,t−3

]
+

[
0.1609 −0.1778
0.1158 −0.1384

] [
Z1,t−4
Z2,t−4

]
+

[
0.1105 0

0 0.0937

] [
Z1,t−5
Z2,t−5

]
+

[
0.1071 −0.0996

0 −0.0063

] [
Z1,t−6
Z2,t−6

]
+

[
0.0210 0.0996

0 0.1309

] [
Z1,t−7
Z2,t−7

]
+

[
0.0689 0

0 0.0729

] [
Z1,t−8
Z2,t−8

]
+

[
−0.0832 0.0831
−0.1112 0.1129

] [
Z1,t−9
Z2,t−9

]
+

[
0.0919 −0.0831
0.0236 0

] [
Z1,t−10
Z2,t−10

]

+

[
0.1067 0
0.0876 0

] [
Z1,t−11
Z2,t−11

]
+

[
2.2096 −2.0906 −1.9226 0

0 0 0 1.6352

] 
X1,t
X2,t
X3,t
X4,t



+

[
0 0 0 −1.8328
0 0 0 −1.9330

] 
X1,t−1
X2,t−1
X3,t−1
X4,t−1

+

[
a1,t
a2,t

]
(13)

3.4. Selection of the Overall Best Model

The forecasting performance was measured using RMSE for in-sample and out-sample
data (Table 3). For in-sample data, the best model for daily mean temperature at 1st

Perak Station is VARX (10,1) and at 2nd Perak Station the best model was ARIMAX. The
different results were shown for out-sample data, where the VARX (10,1) model was the
best model both for daily mean temperature at 1st and 2nd Perak Station since it has a
minimum RMSE for across all horizons. The RMSE values for out-sample data of daily
mean temperature at 1st and 2nd Perak Station for both model increases as the forecasting
period increases this means that the forecasting results are getting inaccurate for longer
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horizon. According to the RMSE value across all horizons for out-sample data, the overall
best model for daily mean temperature at 1st and 2nd Perak Station is VARX (10,1).

Table 3. RMSE of ARIMA and VAR models for in-sample and out-sample data

Output Model In-sample Out-sample by Horizons
One Week Two Weeks One Month Two Months

1st Perak ARIMA 0.7230 0.6573 0.6809 0.9530 1.6782
VARX 0.7014* 0.6270* 0.6650* 0.8867* 1.5891*

2nd Perak ARIMAX 0.6081* 0.5706 0.5817 0.9802 1.7515
VARX 0.6751 0.5117* 0.5376* 0.8806* 1.6316*

Note: *) The Best Model

The forecasting performance from two models for one week and two weeks forecasting
horizons outperforms the performance for in-sample data. This condition indicates that
the models are suitable for short-term forecasting (two weeks at maximum) as
confirmed by the percentage of RMSE that can be reduced by the ARIMA or ARIMAX
and VARX model from the error measures generated from mean-based forecasting as a
benchmark in Figure 6. This procedure also was conducted in previous study [15]. The
RMSE reduction decreases as the forecasting horizon increases for all methods, even
significantly decrease for one month forecasting and getting worse for two months
forecasting horizon since it has negative values.

3.5. Improving the Forecasting Performance of The Overall Best Model

The forecasting scheme for out-sample data used in previous results is k-step ahead.
This study also elaborates other schemes, i.e. one week-step ahead and one day-step
ahead forecasting, to obtain improvement of forecasting performance from the overall
best model. Table 4 shows that generally the k-step ahead produces greater RMSE or has
lower accuracy compared to other schemes, especially for one month and two months
horizons, since this default k-step ahead accumulates the error terms [16]. The two
alternative schemes produce an improvement of forecasting performance, except the
one week-step ahead scheme for one week and two weeks horizons that has RMSE
equal or greater than k-step ahead scheme. The one day-step ahead scheme can produce
the best performance than other schemes for all forecasting horizons since have smallest
and relatively constant RMSE value compared to other forecasting schemes.

Table 4. RMSE of the overall best model for out-sample data using several
schemes

Output Scheme Out sample by Horizons
OneWeek Two Weeks One Month Two Months

1st Perak k-step ahead 0.6270 0.6650 0.8867 1.5891
One week-step ahead 0.6270 0.7160 0.7724 0.6928
One day-step ahead 0.5132* 0.5754* 0.5709* 0.5858*

2nd Perak k-step ahead 0.5117 0.5376 0.8806 1.6316
One week-step ahead 0.5117 0.5729 0.7096 0.6510
One day-step ahead 0.4207* 0.4493* 0.5000* 0.5316*

Note: *) The Smallest RMSE

Figure 7 illustrates the forecasting performance of each scheme and shows that
forecasting value from one day-step ahead scheme has more similar pattern with actual
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(a)

(b)

Figure 6. RMSE reduction of ARIMA or ARIMAX and VARX models for daily
mean temperature at 1st (a) and 2nd (b) Perak station

out-sample data compared to other schemes makes the best forecasting performance as
described before. This figure also shows when the models need to be updated as shown
by the red vertical dotted line, when the actual value is outside the 95% forecast interval.
The overall best model needs to be updated from October 5th, 2018 when using k-step
ahead scheme. By using the one day-step ahead scheme, the time for updating is longer,
i.e. from October 29th, 2018. While, by using the one week-step ahead scheme, the
overall best model does not need to be updated for two months interval of out-sample
data.

4. Conclusion

This study uses the ARIMA and VARIMA model, each with outlier detection, to assess
the forecasting performance of daily mean temperature data at 1st and 2nd Perak Station,
Surabaya. Both the series data consist of trend component that needs to be regularly
differenced. The outliers are incorporated as dummy variables in the ARIMA model of
the 1st Perak Station data and VARIMA model since its residuals were not normally
distributed and not white noise, respectively. According to the RMSE values of several
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(a)

(b)

(c)

Figure 7. Actual data, forecasting value and 95% forecast interval of k-step
ahead (a), one week-step ahead (b) and one day-step ahead (c)
forecasting schemes
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forecasting horizons of out-sample data, the overall best model for daily mean
temperature at 1st and 2nd Perak Station is the multivariate model, i.e. VARX (10,1)
model that forecasting results got inaccurate for longer horizon. This condition
indicated that by utilizing other data to the model, especially from the nearest location,
can improve the forecasting performance for each data.

Using the default k-step ahead forecasting scheme, this study recommends performing
the overall best model only for short term forecasting (two weeks maximum) as the
RMSE after two weeks are bigger than the RMSE of in-sample data which is also
confirmed by significantly decreasing of the RMSE reduction when comparing to the
mean-based forecasting as benchmark. Using the same scheme, the model also needs to
be updated when forecasting from October 5th, 2018 and afterward. The forecasting
performance is significantly improved by using the one week-step ahead and one
day-step ahead forecasting schemes with the best performance produced by the one
day-step ahead scheme that has relatively constant RMSE and has more similar pattern
with actual out-sample data but the model needs to be updated from October 29th, 2018.
While the model with the one week-step ahead scheme does not need to be updated for
two months interval of out-sample data.

References
[1] BPS (Badan Pusat Statistik), “Statistik Lingkungan Hidup Indonesia 2017,” Badan Pusat

Statistik, Tech. Rep., 2017.
[2] B. Ustaoglu, H. K. Cigizoglu, and M. Karaca, “Forecast of daily mean, maximum and

minimum temperature time series by three artificial neural network methods,” Meteorological
Applications, vol. 15, no. 4, pp. 431–445, dec 2008, doi: http://dx.doi.org/10.1002/met.83.

[3] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis : Forecasting and Control,
3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

[4] A. Machmudin and B. S. S. Ulama, “Peramalan Temperatur Udara di Kota Surabaya dengan
Menggunakan ARIMA dan Artificial Neural Network,” J. SAINS DAN SENI ITS, vol. 1, no. 1,
pp. D–118–D123, 2012.

[5] Y. LIU, M. C. ROBERTS, and R. SIOSHANSI, “A vector autoregression weather model for
electricity supply and demand modeling,” Journal of Modern Power Systems and Clean Energy,
vol. 6, no. 4, pp. 763–776, jul 2018, doi: http://dx.doi.org/10.1007/s40565-017-0365-1.

[6] S. Naz, “Forecasting Daily Maximum Temperature of Umeå,” Umeå University, Umeå
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