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ABSTRACT

Information data protection is necessary to ward off and overcome various fraud attacks that
may be encountered. A secret sharing scheme that implements cryptographic methods intends
to maintain the security of confidential data by a group of trusted parties is the answer. In
this paper, we choose the application of recursive algorithm on Shamir-based linear scheme
as the primary method. In the secret reconstruction stage and since the beginning of the
share distribution stage, these algorithms have been integrated by relying on a detection
parameter to ensure that the secret value sought is valid. Although the obtained scheme will be
much simpler because it utilizes the Vandermonde matrix structure, the security aspect of this
scheme is not reduced. Indeed, it is supported by two detection parameters formulated from
a recursive algorithm to detect cheating and identify the cheater(s). Therefore, this scheme is
guaranteed to be unconditionally secure and has a high time efficiency (polynomial running
time).
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1. Introduction

Information data owned by individuals, companies, and public agencies are
undoubtedly a precious asset. The current flow of digital disruption demands an
effective increase of data privacy and security in various digital and internet-based
electronic devices. In response, a mathematical study applies cryptographic methods
that intend to maintain the security of confidential data by a group of trusted parties.
The concept is known as Secret Sharing Scheme (SSS). For more than four decades, it has
been proven that SSS remains a solution to numerous possible fraud attack risks. Too
few shares will be vulnerable to lose, and contrarily, if too many are duplicated, it can
increase the potential for cheating [1].

The concept of SSS was conceived individually by Shamir [2] and Blakley [3], which
is more familiarly referred to as (t, n)-Threshold SSS. In principle, encrypted message
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(secret) s is distributed by a trusted party (dealer) to n private key-holders (shareholders),
and only if there is any subset t or more participants, then the secret can only be read.
Shares in this context are secret pieces that the dealer must put together first to decrypt
the message.

Although Shamir’s scheme is an information-theoretically perfect secure scheme,
Tompa & Woll [4] prove that practically it is incompetent in dealing with cheating, so a
modified scheme is proposed to detect it. Meanwhile, Rabin & Ben-Or [5] introduced
the principle of majority rule n ≥ 2t + 1 in their scheme, which implicitly implies that a
scheme can be said secure if it can resist up to t cheating. The scheme is equipped with
an error check vector to detect and identify cheating. Slinko [6] explains that the length
of each share in bits should exactly the length of the secret and it cannot be shorter for
an ideal scheme. It leads Becerra & Vega [7] and Liu [8] to the idea of a linear
(t, n)-scheme that can detect cheating. Both also highlight the discussion of the
information rate value and the error probability of cheating detection as parameters for
analyzing the scheme’s security. Liu et al. [9] proposed two cheaters identification
algorithms based on symmetric bivariate polynomials at the reconstruction stage,
relying on Lagrange interpolation. Unfortunately, its computation is still considered
inefficient. Then Ahzan et al. [1] proposes a linear approach to improve it but does not
include a security analysis of the scheme. So far, it turns out that a more efficient linear
scheme can still be modified.

This time, an extended Euclidean algorithm in the recursive technique of a modulo
matrix inverse applied to the two main stages of Shamir’s linear scheme was chosen as
the primary method. In the secret reconstruction stage and since the beginning of the
share distribution stage, these algorithms have been integrated by relying on a detection
parameter to ensure that the secret value sought is valid (original). Even though the
scheme obtained will be much simpler because it utilizes the Vandermonde matrix
structure as [1] previously, the security aspect is not reduced. Indeed, it is supported by
particular detection parameters formulated from a recursive algorithm to detect
cheating and identify the cheater(s). Therefore, it is guaranteed to be unconditionally
secure and also has a high time efficiency. The recursive technique can upgrade the
computational speed required by calculating the n input size in each algorithm. In other
words, this scheme can overcome the shortcomings of previous Shamir’s linear scheme
studies.

The purposes of this paper were: 1.) to modify Shamir’s linear scheme by applying a
recursive algorithm, 2.) to construct the scheme with cheating detection and
identification capabilities, and 3.) to analyze the security of cheating detection and
identification.

This paper is organized as follows. In section 2, we give some preliminaries to describe
the fundamental of our work. In section 3, we proposed our modified scheme, which
includes cheating detection and identification algorithms. Lastly, we conclude our work
in section 4.

2. Preliminaries

In this section, we introduce some fundamental backgrounds containing a brief
description of Shamir’s linear scheme, extended Euclidean algorithm, and security
analysis of SSS.
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2.1. Shamir’s Linear (t,n)-Scheme

Definition 1. A (t, n)-SSS is said to be linear if the n secret pieces (shares) s1, s2, . . . , sn can
be written as:


s1
s2
...

sn

 = H


r1
r2
...
rt

 . (1)

H is a public matrix of size n × t with a non-singular t × t submatrix. The vector
(r1, r2, . . . , rt) is randomly generated by the dealer [8].

Based on the Definition 1, it is clear that Shamir’s scheme is a linear scheme which stated
as follows:

1. Share distribution stage
(a) Dealer D generates a prime number p > max(s, n) with s ∈ Zp.
(b) Dealer D determines a random polynomial over Zp notated by a0, a1, . . . , at−1

and choose secret a0 = s.
(c) Dealer D computes n share pieces si = f (i) mod p; i = 1, 2, . . . , n where

f (x) = ∑t−1
j=0 ajxj and distributes each si to participants Pi secretly. Each Pi

gets pair of share points (xi, si).
2. Secret reconstruction stage.

Suppose B = {P1, P2, . . . , Pt} is a subset of t participants pooled by dealer to
calculate the Lagrange interpolation polynomial i.e f (x) = ∑t

i=1 Li (x) si (mod p)
with Li (x) = ∏t

i=1,i 6=t
x−xi
xt−xi

(1 ≤ i ≤ t) and si are the value of each share pieces.
Then the original secret value will be obtained s = f (0) .

It should be noted that an SSS is said to be perfect if it satisfies the following two
conditions:

1. Any t or more participants can reconstruct polynomial f (x) such that secret value
can be recovered, and

2. Any t− 1 or fewer participants will not be able to reconstruct any values.

Even a scheme is not enough to say perfect. The polynomial matrix must also be
guaranteed to be consistent so that all the shares are identical, which causes the
reconstructed secret to being unique [6].

In the linear scheme, we consider the object of the problem that should be solved as the
system of linear equation (SLE) containing t equations and n variables with a hidden
secret value in the first coefficient (a0). The most common solution adopted here is the
Gaussian elimination method. So, it is clear that the linearity of the polynomial matrix
should be noticed from this typical scheme.

2.2. Extended Euclidean Algorithm

By understanding that generated polynomial matrix should be a linear matrix, the
following approach will be related to the recursive technique of the extended Euclidean
algorithm [10]. In line with computational SSS works under discrete arithmetic, the
multiplication of a polynomial matrix with modulo matrix inverse can increase the
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running time. Therefore, Shamir’s linear SSS requires a recursive algorithm embedded
in both stages.

2.3. Security Analysis of SSS

There are two types of security protocols known in cryptographic security analysis:
computational security and unconditional security. Computational security stands to
the assumption that an adversary has limited computing power that prevents him from
solving complex mathematical problems. While unconditional security means that the
security persists even if the adversary has unlimited computing power [11–14]. It led
Cabello et al. [15] to propose two unconditionally secure linear schemes against
cheaters, classified as a robust scheme and a secure scheme. The security is analyzed by
calculating the information rate and the probability of successful cheating. The excess
information added to the share is required to obtain unconditional security. Mashhadi
[16] proposed two publicly verifiable schemes with general access structure. Then
Banerjee et al. [17] analyzed the security and performance of their modified Shamir’s
scheme with the underlying hierarchy concept. Both schemes [16, 17] are also robust
and secure. Slinko [6] explained that the length of each share in bits should exactly the
length of the secret and it cannot be shorter for an ideal scheme, where it must be the
perfect scheme and has an information rate value equal to 1. It is known that the
information rate can decrease (the level of secrecy decreases) along with the chances of
successful cheating. The opportunity should not depend on the assumption of
computational resources available to participants.

3. Results and Discussion
3.1. Recursive Algorithm Design

The main problem here is reconstructing the secret value to obtain the original value (a
valid one). Shamir’s linear scheme is a Shamir’s scheme represented in matrix
multiplication HX = Y where there is a minimum of T square submatrix that will
reconstruct the secret. Let f (x) = a0 + a1x + · · ·+ at−1xt−1 where aj = aj−1 + aj−2 (mod
p) is a polynomial equation generated in the share distribution stage, forming the
submatrix T. Also, suppose (xi, si) with si = f (xi) for i = 1, 2, . . . , t is a sequence of t
value pairs representing the identity and share, which will reconstruct the secret
respectively. Then the matrix equation associated with the SLE in it is TX = Y, it can be
written



1 x1 x2
1 x3

1
1 x2 x2

2 x3
2

1 x3 x2
3 x3

3

· · ·
· · ·
· · ·

xt−2
1 xt−1

1
xt−2

2 xt−1
2

xt−2
3 xt−1

3
...

. . .
...

1 xt−1 x2
t−1 x3

t−1
1 xt x2

t x3
t

· · ·
· · ·

xt−2
t−1 xt−1

t−1
xt−2

t xt−1
t





a0
a1
a2
...

at−2
at−1


=



s1
s2
s3
...

st−1
st


(2)

Reconstructing the secret means solving the SLE (2) in the most efficient way possible.
As in general SLE solutions, in the initial step, (2) is represented as an augmented matrix
G = (T|Y) of size t× (t + 1),
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G =



1 x1 x2
1 x3

1
1 x2 x2

2 x3
2

1 x3 x2
3 x3

3

· · ·
· · ·
· · ·

xt−2
1 xt−1

1 s1
xt−2

2 xt−1
2 s2

xt−2
3 xt−1

3 s3
...

. . .
...

1 xt−1 x2
t−1 x3

t−1
1 xt x2

t x3
t

· · ·
· · ·

xt−2
t−1 xt−1

t−1 st−1

xt−2
t xt−1

t st


(3)

Then by utilizing the submatrix T structure, the Vandermonde matrix, the SLE (2)
solution can be formulated recursively with Gaussian elimination and multiplication of
modulo matrix inverse. Finally, obtained

at−1 =
s(t−2)

t − s(t−2)
t−1

xt − xt−1
(4)

and

at−2 = s(t−2)
t−1 − (x1 + x2 + · · ·+ xt−2 + xt−1)at−1 (5)

Since aj = aj−1 + aj−2 (mod p) for j = 0, 1, . . . , (t− 1) , the polynomial f can be
reconstructed using the recursive formula:

at−k = at−k+2 + at−k+1 (mod p) for k = 3, 4, 5, . . . , t (6)

which consequently the secret value s = a0 and detection parameter pD = ∑t−1
j=0 aj can be

known.

3.2. Modified Linear Scheme with Recursive Algorithm

A new modified scheme is constructed with a linear approach and inserts recursive
techniques on both algorithms, share distribution, and secret reconstruction. The
resulting scheme is a perfect and very simple yet still guaranteed to be secure against
cheating. The algorithm in the reconstruction stage is already equipped with a
mechanism to detect cheating and identify the cheater(s) without using Lagrange
interpolation anymore. The p and secret s value generated greatly affect the security
level of the built scheme. This is as shown if |p| = B, then |s| = B

2 = b. Then b and pD
will be the detection parameters of cheating and the guarantee for recovering the
original secret value.

3.2.1. Share distribution stage

Algorithm 1. Share distribution to n participants.

Input : p, t, n.

1. Dealer D generates a prime number p > (s, n) such that s ∈ Z2b .
2. Dealer D determines the number of participants n and thresholds t; n, t ∈ Z+.
3. Dealer D defines random polynomial f (x) = ∑t−1

j=0 ajxj over Zp.
4. Dealer D computes the share value of each n participant that is si = f (xi) mod
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p; i = 1, 2, . . . , n and distributes them to Pi.

Output : pair of share pieces value (xi, si).

It is important to recall that Shamir’s linear scheme is a Shamir’s scheme represented in
terms of matrix multiplication HX = Y and can be viewed as SLE with:

1. H is a matrix of size n × t whose i-th row for i = 1, 2, . . . , n is a vector
(1, xi, x2

i , . . . , xt−1
i ) with xi as the representation of the identity of i-th participant.

2. Y is a column matrix of size n × 1 whose i-th entry for i = 1, 2, . . . , n is si,
representing the share value of i-th participant.

3. X is a column matrix of size t × 1, a variable matrix in SLE when H and Y are
known.

Based on this, it can be easily observed that any submatrix T of size t × t of H is a
Vandermonde matrix in which T is guaranteed to be non-singular. If there is no change
in the value (i.e., cheating) on the share si, it can also be guaranteed that the SLE
definitely is consistent.

3.2.2. Secret reconstruction stage

Algorithm 2. Cheating detection.

This is a procedure for cheating detection at m = t, where the sub-SLE solution X = T−1Y
is calculated and tested for conformity with the detection parameters b and pD. If it is
proven that no cheating is found, the original secret value s can be reconstructed. The
vectors in this algorithm are stored as a list.

Input : t, m, G, Y, b, pD.

1. Pools a list of ordered pairs G that will reconstruct the secret, consisting of m
participants and their share value pairs.

2. Computes the sub-SLE solution X = T−1Y such that X = F.

Output : There is no cheating and s is the original secret, else

Output : There is cheating, s = 0.

Algorithm 3. Cheating detection and identification for m (≥ t) .

This is a procedure to detect and identify cheating and then reconstruct the original secret
value with 0 ≤ k ≤ m− t. Two detection parameters b and pD are available, which will
test the consistency of the calculated sub-SLE. The vectors in this algorithm are stored as
a list. The input procedure includes t, m, G, Y, b, pD.

1. Determine the number of m participants who will reconstruct the secret with m =
t + l; 0 ≤ l ≤ n− t.

2. Pool a list of ordered pairs G to reconstruct the secret, consisting of m participants
and their share value pairs.

3. Let k represents the number of participants who cheated,
4. For 0 ≤ k ≤ l, the output is [s, K] with K the set of identities of participants who

commit cheating.
5. For l ≤ k ≤ m, the output is 0 and the original secret cannot be reconstructed. This

happens because k > m− t.

Remark 1. The time complexity of Algorithm 2 is Tdet (n) = O (n), and Algorithm 3 is
Tident (n) = O

(
n3 + nlogn

)
. Both algorithm class is a polynomial running time.
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Theorem 1. The proposed modified linear scheme is a perfect (t, n) -SSS and the probability of
successful secret reconstruction is ε = 2−αb.

Proof. Assume the number of participants working together to pool pairs of share values
is less than t, for example (t− a), the sub-SLE solution is guaranteed not to be unique
even if the actual si value is given. In this case, the value of the X matrix that satisfies the
sub-SLE is pα but the value of X which has a structure corresponding to F is only 2ab. So,
the probability of getting the correct value of s is 2−ab. As Ahzan et al. [1] have shown,
(t− 1) participants in Shamir’s linear scheme will not get the real secret because the
calculated matrix is not linearly independent, so does our modified linear scheme.

Theorem 2. The modified linear scheme can detect cheating if m = t with a probability of
detection error ε < 2−b.

Proof. Under this scheme, cheating detection is carried out by pooling all share values
of m participants and calculating the sub-SLE solution X = T−1Y based on a recursive
formula determined by a trusted dealer. Suppose the value of the first entry of X /∈ Z2b

or its entries does not have a recursive pattern as the initial F. In that case, it is strongly
suspected –so it can be detected– that there is cheating, whether intentional or not, during
the collection of value pairs (xi, si) so that ε < 2−b.

Theorem 3. The modified linear scheme can detect and identify cheating if m− k ≥ t.

Proof. The cheating detection procedure can be carried out in this scheme if there are
m ≥ t participants and at the same time identify the cheater(s) if there are 0 ≤ k ≤ m− t

cheating. It means that a combination
(

m− k
t

)
of participants who will reconstruct

the original secret is available. Assume the number of cheating is not exceed the honest
participants involved in the reconstruction; this is in line with the principle of majority
rule proposed by Rabin & Ben-Or [5]. Thus, our procedure is effective up to t cheating,
more effective than the Liu [8] and Ahzan et al. [1] schemes. The sub-SLE solution X =
M−1

L Y is calculated by the recursive formula at−k for k = 3, 4, 5, . . . , t and also applies
more detailed provisions as explained in the proof of Theorem 2.

3.3. Security Analysis

Unconditional security of our linear modified scheme is focused on the following three
main points:

1. Data confidentiality (secret). The secret value can be reconstructed only if m ≥ t
participants are available. In the cheating detection and identification algorithm,
one of the detection parameters stores essential information in the form of a secret
key. So even if cheating is found, this scheme will return the original secret as long
as 0 ≤ k ≤ m − t. The secret authenticity and originality of our scheme are
guaranteed to be safe. Previously, it was mentioned in the share distribution stage
that the parameters p and s greatly determine the strength and weakness of the
scheme’ security. If p is determined as B, then s is chosen as b. While the
information rate ρ = log|S|

log|V| = 1
2 , meaning that the size of the secret s taken is quite

small in Zp but guaranteed to be easily found by honest participants and in
legitimate channels.
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2. Data integrity (share). The basic assumption here, dealer D is a trusted party and
all distributed shares have been stored in legitimate channels as n-pair shares
(xi, si). Though it is not the share’s identity that determines the successful
reconstruction, which will be possible to detect the identity of the shareholder
participant who committed the cheating with an embedded recursive algorithm.
This is because the consistency of the polynomial matrix can be maintained.
However, the incompatibility of share values still may likely occur, it indicates
cheating. The original secret value can be reconstructed as long as the number of
forged shares is not more than (m− k). That is the limit of our scheme’s cheating
identification capability. The released share key has fit the ideal size as a private
key cryptographic scheme. So, it is clear that the integrity of the scheme is very
well preserved.

3. Flexibility of shareholders (threshold). The number of participants who take part
in the secret reconstruction process is referred to as the threshold. Theoretically
and practically, Shamir’s scheme never limits the shareholder participants who are
allowed to participate in this process in a particular order. Anyone can participate
randomly to pool their share value and then evaluate the secret value with a
recursive algorithm that the dealer has prepared.

Based on the explanations above, our modified linear scheme is proven to be an
unconditionally secure scheme and has fulfilled all the conditions of a perfect scheme.

4. Conclusion

A secret sharing scheme is appropriate to protect essential information data in a secure
channel from various fraud attacks. As a mathematical study, the existing assumptions
have been built close to ordinary phenomena. In this paper, a modified linear scheme
based on Shamir’s with the application of a recursive algorithm on secret reconstruction
was chosen as a solution to overcome cheating attacks.

The linear and recursive approach to the polynomial matrix produces detection
parameters that can guarantee the original secret value remains in a secure channel and
is quickly recovered by a group of m trusted participants. When reconstructing the
secret value, this scheme can automatically detect up to k cheating and at the same time
identify the cheater(s) as long as the number of cheatings is 0 ≤ k ≤ m − t. Thus, the
recursive approach to this modified linear scheme is not only effective in maintaining
secret security and overcoming fraud attacks but is also efficient in terms of algorithm
construction and time complexity (polynomial time). The scheme is proven to be
unconditionally secure.
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