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ABSTRACT

In this manuscript, the dynamics of a fractional-order predator-prey model with age structure on
predator and nonlinear harvesting on prey are studied. The Caputo fractional-order derivative is used
as the operator of the model by considering its capability to explain the present state as the impact of all
of the previous conditions. Three biological equilibrium points are successfully identified including
their existing properties. The local dynamical behaviors around each equilibrium point are investigated
by utilizing the Matignon condition along with the linearization process. The numerical simulations
are demonstrated not only to show the local stability which confirms all of the previous analytical
results but also to show the existence of periodic signal as the impact of the occurrence of Hopf
bifurcation.
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1. Introduction

Two species with prey and predator relationships remain a priority consideration of most
mathematical scholars in developing ecological modeling. The main basis of this state
of affairs lies in the importance of maintaining the availability of biological resources.
Since the existence of prey depends on the way they can protect themselves from the
presence of a predator and the growth rate of predator stand on the availability of prey as
their foods, studying the predator-prey interaction with mathematical modeling growing
more and more. Some modifications based on the biological behaviors are integrated
to construct a better model. For example, the predator-prey model involving the effect
of fear [1–4], the impact of Allee to the existence of prey and predator [5–8], and the
exploitation of biological resources by harvesting [9–11].
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In this paper, we study the dynamical behaviors of the prey and predator relationship
which assume that (i) the predator is divided into two compartments namely the
juvenile and adult predators as the impact of the inability of the juvenile predator in
hunting prey, and (ii) the harvesting on prey by humans for foods. The first assumption
known as age structure which can be seen in [12–14], the second assumption is given by
nonlinear (or Michaelis-Menten) harvesting which states the harvesting has a saturation
point as in [15–18], and references therein. We also include the memory effect which
expresses the impact of all previous biological behaviors on the present condition of the
population by applying the fractional-order derivative to replace the conventional
first-order derivative as the operator [19–22]. The memory effect state that the
population dynamics of the present states depend on all of the previous condition that
are saved on their system memory such as their previous experience in finding foods,
the best place to get protection, the right time to migrate to another places, and so forth.
There are several famous fractional-order derivative used for the operator such as the
Riemann-Liouville, Caputo, Caputo-Fabrizio, and Atangana-Baleanu [23–27]. Taking
into account the availability of the analytical tools, the Caputo fractional-order the
derivative is chosen for the operator of the given model in this paper.

To make this manuscript more structured, we organize the content as follows: the
mathematical methods including model formulation and replacing operator are given in
Section 2. The Section 3 is provided to explore the dynamical behaviors of the model by
considering the biological equilibria, local dynamics, and numerical simulations. We
end the discussion of the paper by giving a conclusion in Section 4.

2. Methods
2.1. Model Formulation

The interaction between prey and its predator is modeled by adopting a classical
Lotka-Volterra model proposed by Alfred J. Lotka [28] and Vito Volterra [29]. We
symbolize the density of predator as x(t) and the density of prey as P(t). Let prey grow
logistically following Verhulst model [30] with r is its intrinsic growth rate of prey and K
is its environmental carrying capacity. The prey is then hunted by a predator for foods
bilinearly with m as the predation rate (or called Holling type-I predator functional
response, see [31] and references therein). The birth rate of a predator depends on how
much the predation process could supply the foods for breeding with n as the parameter
which shows the predation conversion rate to the birth rate of the predator. The density
of the predator decreases as the impact of the natural death rate denotes by δ1. The
given assumptions are formulated as

dx
dt

= rx
(

1− x
K

)
−mxy,

dP
dt

= nxP− δ1P.

Suppose that the predator is divided into two compartments namely juvenile predator
(y(t)) and adult predator (z(t)). Only adult predator has capability for hunting.
Therefore, the following model is obtained.

dx
dt

= rx
(

1− x
K

)
−mxz,

dy
dt

= nxz− βy− δ1y,
dz
dt

= βy− δ2z,

where β is the transition rate from juvenile to adult predators and δ2 is the natural death
rate of adult predator. Since the adult predator has responsibility for hunting and
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providing food for the juvenile predator, we assume that the foods for them are
sufficient to satisfy their needs so that competition among adult predators does not
exist. Different circumstance occurs among juvenile predators. They compete with each
other to get food from the adult predator because of their inability to find their foods
and only hope on food brought by adult predators. Obeying the intraspecific
competition concept given by Bazykin [32], the model becomes

dx
dt

= rx
(

1− x
K

)
−mxz,

dy
dt

= nxz− βy− δ1y−ωy2

dz
dt

= βy− δ2z

(1)

where ω the death rate of juvenile predator due to competition. The interspecific
competition population is succesfully applied in several model as given in [8, 33–35]. In
several cases, human intervention in the ecosystem also affects the existence of a
population. Here, we assume that prey is harvested following nonlinear type harvesting
or known as Michaelis-Menten harvesting. See [17, 36–38] for another example of this
type of harvesting. Therefore, we acquire

dx
dt

= rx
(

1− x
K

)
−mxz− hx

c + x
,

dy
dt

= nxz− βy− δ1y−ωy2

dz
dt

= βy− δ2z,

(2)

where h is the harvesting rate and c is the half saturation constant of harvesting.

2.2. Model with Caputo Operator

A Caputo operator is a fractional-order derivative which defined by

Definition 1. [23, 24] Let 0 < α ≤ 1. The Caputo fractional derivative with order-α is
defined as

CDα
t u(t) =

1
Γ(1− α)

∫ t

0
(t− s)−αu′(τ)dτ, (3)

where t ≥ 0, u ∈ Cn([0,+∞), R), and Γ(·) is a Gamma Euler function.

Now, we adopt the similar manner using by Panigoro, et al. [5, 19, 20]. The first-first
order derivative at the left-hand side of model (2) is replaced by the Caputo fractional-
order derivative given in Definition 1. We obtain

CDα
t x(t) = rx

(
1− x

K

)
−mxz− hx

c + x
CDα

t y(t) = nxz− βy− δ1y−ωy2

CDα
t z(t) = βy− δ2z.

(4)

When the operator is replaced, the time’s dimension at the left-hand side is scaled from
t to tα. The model becomes inconsistent because some parameter such as r, m, h, n, β, δ1,
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δ2, and ω stil have dimension of time t1 which are different from the other side of model
(4). This conditions can be adjusted by rescale all the propitious parameters. Thus the
appropriate model is given by

CDα
t x(t) = rαx

(
1− x

K

)
−mαxz− hαx

c + x
CDα

t y(t) = nαxz− βαy− δα
1 y−ωαy2

CDα
t z(t) = βαy− δα

2 z.

(5)

Let r̄ = rα, m̄ = mα, h̄ = hα, n̄ = nα, β̄ = βα, δ̄1 = δα
1 , δ̄2 = δα

2 , and ω̄ = ωα. Model (5)
becomes

CDα
t x(t) = r̄x

(
1− x

K

)
− m̄xz− h̄x

c + x
CDα

t y(t) = n̄xz− β̄y− δ̄1y− ω̄y2

CDα
t z(t) = β̄y− δ̄2z.

(6)

For simplicity, the parameters are resymbolized by dropping the bar ·̄ on each parameter.
Thus we get the final model as follows.

CDα
t x(t) = rx

(
1− x

K

)
−mxz− hx

c + x
CDα

t y(t) = nxz− βy− δ1y−ωy2

CDα
t z(t) = βy− δ2z.

(7)

3. Results and Discussions

In this section, we present the analytical and numerical results including their biological
interpretations. We first identify the existence of biological equilibria, investigate the
local dynamics, and ended by computing the numerical solutions to show the dynamical
behaviors numerically.

3.1. Biological Equilibria

Biological equilibria is basically the equilibrium point of model (7) which exists in R3
+ :={

(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, (x, y, z) ∈ R3}. Therefore, the following equations are
needed to solve. [

r
(

1− x
K

)
−mz− h

c + x

]
x =0,

nxz− βy− δ1y−ωy2 =0,
βy− δ2z =0.

The first equilibrium point is given by E0 = (0, 0, 0). This equilibrium point always exists
which represents the extinction of both prey, juvenile predator, and adult predator. The
second equilibrium point is presented by E1 = (x̂, 0, 0) which represents the predator-free
condition where x̂ is the positive root of a quadratic equation as follows.

x2 + (c− K)x +

(
h
r
− c
)

K = 0 (8)
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The existence of E1 is given by the following theorem.

Theorem 1. Suppose that

h∗ =
(c + K)2r

4K
,

x̂1 =
K− c

2
+

√
(h∗ − h)

K
r

,

x̂2 =
K− c

2
−
√
(h∗ − h)

K
r

.

(i) If h > h∗ then E1 does not exist.
(ii) If h = h∗ and

(ii.a) K > c then a unique E1 exist given by E1 =

(
K− c

2
, 0, 0

)
, or;

(ii.b) K < c then E1 does not exist.
(iii) If h < h∗ and

(iii.a) c < min
{

h
r

, k
}

then there exists two equilibrium points E11 = (x̂1, 0, 0) and E12 =

(x̂2, 0, 0), or;

(iii.b) c >
h
r

then there exist a single E1 = (x̂1, 0, 0), or;

(iii.c) K < c <
h
r

then E1 does not exist.

Proof. Note that E1 ∈ R3
+ if x̂ > 0 or the root of eq. (8) respect to x is positive. By simple

computation gives x̂1 and x̂2 are the roots of eq. (8). Before the positive root is recognized,
the existence of real solution is then confirmed. It is clear that this situation depends on
the value of h. When h > h∗, both roots are complex conjugate numbers and hence E1

does not exist. For h = h∗, x̂1 = x̂2 =
K− c

2
which is positive when K > c. Thus, only

K > c gives a unique E1. When h < h∗, x̂1 and x̂2 are real numbers. If c < min
{

h
r

, k
}

then both roots are positive numbers, if c >
h
r

then only x̂1 is positive, and if K < c <
h
r

then x̂i < 0, i = 1, 2. The existence of E1 are completely explored.

At the last of this subsection, the third equilibrium point lie on the interior is observed.
This equilibrium is given by E∗ = (x∗, y∗, z∗) which define the existence of all populations

given by x∗ =
(β + δ1 + ωy∗)δ2

βn
, z∗ =

βy∗

δ2
, and y∗ is positive root respect to y of a

quadratic equation a1y2 + a2y + a3 = 0 where

a1 =

(
ωδ2r
βn

)2

+
ωmK

n

a2 = (β + δ1)
mK
n

+
βcmK

δ2
+ (c− K)

ωδ2r
βn

a3 = hK +

(
1 +

δ1

β

)
(c− K)

δ2

n
+ (β2 + δ2

1)
rδ2

2
(βn)2 − crK
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x∗ =
(β + δ1 + ωy∗)δ2

βn

y∗ =
−a2 +

√
a2

2 − 4a1a3

2a1

z∗ =
βy∗
δ2

3.2. Local Dynamics

In this subsection, the dynamical behavior around each equilibrium point is studied.
The Matignon condition [39] is utilized after the Jacobian matrix is evaluated. As results,
Theorems 2 to 4 are successfully constructed to describe the local stability of all biological
equilibria. Two possible local dynamics are provided here namely locally asymptotically
stable (LASEP) equilibrium point and saddle equilibrium point (SEP).

Theorem 2. E0 = (0, 0, 0) LASEP if r <
h
c

, otherwise a SEP.

Proof. The following Jacobian matrix are achieved as a proceeding of computes it at E0 =
(0, 0, 0).

J(x, y, z)|E0
=

 r− h
c

0 0

0 −(β + δ1) 0
0 β −δ2

 .

Thus, we have three eigenvalues λ1 = r − h
c

, λ2 = −(β + δ1), and λ3 = −δ2. Since

λi < 0, i = 2, 3, we obtain |arg (λi)| >
απ

2
, i = 2, 3. Accordingly, the stability of E0

determined by the value of λ1 which gives |arg (λ1)| >
απ

2
if r <

h
c

and |arg (λ1)| <
απ

2
if r >

h
c

. obeying Matignon condition [39], the LASEP and SEP requirements given by
Theorem 2 are completely verificated.

Theorem 3. If h <
(c + x̂)2r

K
and x̂ <

(β + δ1)δ2

βn
then E1 is LASEP. The SEP condition of E1

occurs when h or x̂ has the opposite sign.

Proof. The Jacobian matrix at E1 = (x̂, 0, 0) is

J(E1) =


(

h
(c + x̂)2 −

r
K

)
x̂ 0 −mx̂

0 −(β + δ1) nx̂
0 β −δ2

 ,

which gives an eigen values λ1 =

(
h

(c + x̂)2 −
r
K

)
x̂ and a pair of eigen values λ2,3

obtained from quadratic polynomial characteristic as follows.

λ2 + (β + δ1 + δ2)λ + (β + δ1)δ2 − βnx̂ = 0. (9)
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Equation (9) gives a pair eigenvalues as follows.

λ2 = − 1
2

[
β + δ1 + δ2 −

√
(β + δ1 − δ2)

2 + 4βnx̂
]

,

λ3 = − 1
2

[
β + δ1 + δ2 +

√
(β + δ1 − δ2)

2 + 4βnx̂
]

.

It could be clarified that λi ∈ R, i = 2, 3. Moreover, λ3 < 0 and hence |arg (λ3)| >
απ

2
.

Thus, the stability is confirmed from the argument of λ1 and λ2. If h <
(c + x̂)2r

K
, then we

have negative sign of λ1 which impact |arg (λ1)| >
απ

2
. The opposite condition occurs

for the diferent sign of h. If x̂ <
(β + δ1)δ2

βn
then λ2 < 0 and hence |arg (λ2)| >

απ

2
. The

different values of λ2 given by x̂ >
(β + δ1)δ2

βn
. All possible dynamics are shown when

the Matignon condition is applied [39]. This ends proof.

Theorem 4. Suppose that

ξ1 = δ1 + δ2 + β + 2ωy∗ +
(

c
c + x∗

− 1
)

h
c + x∗

ξ2 = δ1δ2 + βδ2 + 2ωδ2y∗ + (δ1 + β + 2ωy∗ + δ2)
ch

(c + x)2

− (δ1 + β + 2ωδ2y∗ + δ2)
h

c + x∗
− βnx∗

ξ3 = βmnx∗z∗ + (βnx∗ − δ1δ2 − δ2x∗ − 2ωδ2y∗)
h

c + x∗

+ (δ1δ2 + δ2x∗ + 2δ2ωy− βnx∗)
ch

(c + x∗)2

∆ = 18ξ1ξ2ξ3 + (ξ1ξ2)
2 − 4ξ3ξ3

1 − 4ξ3
2 − 27ξ2

3.

LASEP condition is satisfied by E∗ = (x∗, y∗, z∗) if one of the following statements hold.

(i) ∆ > 0, ξ1 > 0, ξ3 > 0, and ξ1ξ2 > ξ3 or;

(ii) ∆ < 0, ξ1 ≥ 0, ξ2 ≥ 0, ξ3 > 0 and α <
2
3

or;

(iii) ∆ < 0, ξ1 < 0, ξ2 < 0 and α >
2
3

or;
(iv) ∆ < 0, ξ1 > 0, ξ2 > 0, ξ1ξ2 = ξ3 for all 0 < α < 1.

Proof. Computing the Jacobian matrix evaluated at E∗, we get

J(E∗) =


(

1− c
c + x∗

)
h

c + x∗
0 −mx∗

nz∗ −(−δ1 + β + 2ωy∗) nx∗

0 β −δ2

 ,

which gives a polynomical characteristic equation a follows.

λ3 + ξ1λ2 + ξ2λ + ξ3 = 0. (10)
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(a) (b)

Figure 1. Phase portrait of model (7) around E0 and E1 with parameter values
are given by (a) eq. (11) (b) eq. (12)

(a) α = 0.84 (b) α = 0.88

Figure 2. Phase portrait of model (7) around E0 with parameter values are given
by eq. (13)

Applying Proposition 1 in Ahmed, et al. [40], all statements given in Theorem 4 can be
validly confirmed.

3.3. Numerical Simulations

In this section, we apply a generalized predictor-corrector numerical scheme for
fractional-order differential equation given by Diethelm, et al. [41] to investigate the
local dynamics around equilibrium points. The numerical schemes are given by the
following equations.

xh(tn+1) = x(0) +
hα

Γ(α + 2)
F1

(
xP

h (tn+1), yP
h (tn+1), zP

h (tn+1)
)

+
hα

Γ(α + 2)

n

∑
j=0

aj,n+1F1
(
xh
(
tj
)

, yh
(
tj
)

, zh
(
tj
))

,

yh(tn+1) = y(0) +
hα

Γ(α + 2)
F2

(
xP

h (tn+1), yP
h (tn+1), zP

h (tn+1)
)

+
hα

Γ(α + 2)

n

∑
j=0

aj,n+1F2
(
xh
(
tj
)

, yh
(
tj
)

, zh
(
tj
))

,

zh(tn+1) = z(0) +
hα

Γ(α + 2)
F3

(
xP

h (tn+1), yP
h (tn+1), zP

h (tn+1)
)

+
hα

Γ(α + 2)

n

∑
j=0

aj,n+1F3
(
xh
(
tj
)

, yh
(
tj
)

, zh
(
tj
))

,

xP
h (tn+1) = x(0) +

1
Γ(α)

n

∑
j=0

bj,n+1F1
(
xh
(
tj
)

, yh
(
tj
)

, zh
(
tj
))

,
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yP
h (tn+1) = y(0) +

1
Γ(α)

n

∑
j=0

bj,n+1F2
(
xh
(
tj
)

, yh
(
tj
)

, zh
(
tj
))

,

zP
h (tn+1) = z(0) +

1
Γ(α)

n

∑
j=0

bj,n+1F3
(
xh
(
tj
)

, yh
(
tj
)

, zh
(
tj
))

.

where xh, yh, and zh are the corrector schemes for prey, juvenile predator, and adult
predator, respectively; xP

h , yP
h , and zP

h are respectively the predictor schemes for prey,
juvenile predator, and adult predator; h is the step-size; and

aj,n+1 =


nα+1 − (n− α) (n + 1)α, jika j = 0,
(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, jika 1 ≤ j ≤ n,
1, jika j = n + 1,

bj,n+1 =
h
α

(
(n + 1− j)α − (n− j)α) .

Now, we start our first simulation by setting the parameter values as follows.

r = 0.1, k = 5, m = 0.25, h = 0.1, c = 0.5, n = 0.01, β = 0.06,
δ1 = 0.05, ω = 0.1, δ2 = 0.05, and α = 0.95. (11)

It is clear from analytical results that Theorem 2 is satisfied and E0 is LASEP. By
numerical simulation, we portray local dynamics as a phase portrait in Figure 1(a). All
nearby solutions converge to E0 which states for low population densities of both prey
and predator effect cause their extinction as time goes on.

For the second simulation, the parameters are setted as follows.

r = 0.1, k = 5, m = 0.25, h = 0.03, c = 0.5, n = 0.01, β = 0.06,
δ1 = 0.05, ω = 0.1, δ2 = 0.05, and α = 0.95. (12)

If we choose the parameter as in eq. (12), E1 becomes LASEP and this confirm Theorem 3.
As result, we have a phase portrait given by Figure 2(b). All nearby solutions converge
to E1 as t → ∞. The population of both juvenile and adult predators will become extinct
and on the other hand, the prey success to maintain its existence.

we give the following parameter values as our last numerical simulations.

r = 0.8, k = 5, m = 0.25, h = 0.01, c = 0.08, n = 0.2, β = 0.4,
δ1 = 0.01, ω = 0.1, and δ2 = 0.01. (13)

According to Theorem 4(iii), the stability of E∗ depends on the values of α. We set α = 0.84
and 0.88 and plot in into Figure 2(a) and 2(b). When α = 0.84, we have a LASEP E∗

which confirm Theorem 4(iii). The stability of E∗ vanishes and is replaced by unstable
E∗ without changing its value when α = 0.88. The interesting dynamics show around
E∗ where all nearby solutions converge to a periodic signal namely Hopf bifurcation.
See [19, 20] and references therein for further information about this bifurcation. From
a biological point of view, this phenomenon shows the existence of both populations in
another way. Both populations’ density changes periodically around their interior point.
This means, that by changing the order of the derivative, the prey and predator change
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their behavior to maintain their existence.

4. Conclusion

A fractional-order predator-prey model with age structure on predator and nonlinear
harvesting on prey has been studied. The dynamical behaviors including the existence
of biological equilibria and local asymptotic stability have been investigated. Three
possible equilibrium points have been found namely the origin, axial point, and the
interior point are identified in both their existence conditions and local asymptotic
stability. Some numerical simulations have been provided to support analytical
findings. The existence of Hopf bifurcation has been shown numerically which indicates
that there exists a condition where the interior point is unstable but the existence of
three populations is still maintained due to the occurrence of a periodic signal called
limit-cycle. From all analytical and numerical results, we also conclude that it is
impossible for prey to extinct when the predator exists. This makes sense when we take
note of the model assumes that the prey is the only food resource for the predator.
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