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ABSTRACT

The importance of the saturation term in an SEIR (Susceptible, Exposed, Infected, and Recovered)
epidemic model was examined in this article. To estimate the basic reproduction number (R0), examine
the stabilities and run numerical simulations on the model, the next generation matrix, the Lyapunov
function and Runge-Kutta techniques were used. The numerical simulation results reveal that, the
saturation term has a significant influence in the model’s susceptible and infected compartments.
However, as demonstrated by the simulation results, saturation term has a greater influence on
vulnerable people than on infected people. As a result, greater sensitization programs through
seminars, media, and awareness will be more beneficial to the vulnerable class than the afflicted class
during disease eradication.
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1. Introduction

Epidemiology problems are usually formulated with mathematical models. These
models are often applied to track the transmission dynamics of various diseases.
Research on a mathematical model for the effective management of HIV infection was
carried out in [1]. A paper on the numerical simulation of the SEIRS epidemic model
with a saturated incidence rate considering the saturation term for susceptible
individuals was presented in [2]. In their research, the disease-free and endemic
equilibrium points are established. The basic reproduction number was derived using
the next generation matrix. The local stability and global stability of both the
disease-free and endemic equilibriums were also obtained using the next generation
matrix. A conceptual investigation of the disease transmission coefficient was equally
conducted in [3]. In their research, the Laplace Adomian decomposition method was
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applied to carry out the numerical simulation of a SEIR epidemic model. Their research
proved that the technique applied is an efficient one and the disease-free equilibrium is
a vital parameter to be considered during disease eradication. Similarly, the effect of the
disease transmission coefficient on a disease-induced death SEIR epidemic model was
conducted using the homotopy perturbation method in [4]. Their result showed that the
homotopy perturbation method is an effective and productive method that distances
itself, employ challenging computational work than other numeral methods.

The saturation term plays an important role in the spread of infectious diseases.
Numerous researchers have worked on the impact of saturation terms in the eradication
of diseases. For example, the analysis of saturation terms in mathematical models for
malaria transmission was studied in [5]. They concluded in their research that
increasing the saturation term by reducing the infection rate between humans and
vectors through proper sensitization by health workers and using active anti-malaria
drugs can reduce the prevalence of malaria. The law of mass action and saturation term
in a SIR model with application to coronavirus modelling were studied in [6]. They
concluded in their research that the saturation term is sufficient to capture the disease
dynamics for many jurisdictions, including the overall world-wide disease curve
progression. A Mathematical Model and Analysis of an SVEIR Model for Streptococcus
Pneumonia with Saturated Incidence Force of Infection was studied in [7]. Their study
indicated that improving the efficiency and enlarging the capacity of treatment are
efficient ways to control the spread of disease. A mathematical analysis of the diarrhea
model with a saturated incidence rate was studied in [8]. In their research, they
presented a compartmental mathematical model of (SITR) to investigate the effect of
saturation treatment on the dynamical spread of diarrhea in the community. Their study
revealed that if drugs were made available to consumers at a saturation treatment rate
of 99% at a very low cost on time, there would be a reduction in the dynamic spread of
diarrhea in a community. A simple epidemiological model for typhoid with a saturated
incidence rate and treatment effect was presented in [9]. They analyzed the impact of
the saturation term on the incidence rate. Their research revealed that typhoid fever
could be eradicated if control strategies associated with saturation parameters are
increased. A biological mathematical model of vector-host disease with saturated
treatment function and optimal control strategies was presented in [10]. In their
research, they explored the dynamics of vector-host disease with a saturated treatment
function. Their study showed that the best possible strategy that can minimize the
number of infected humans is the application of their speculated control methods
simultaneously. Advancing the research work in [10], an optimal control analysis of a
vector-host model with saturated treatment was studied in [11]. Their research
suggested different control intervention strategies useful during disease eradication.

Often, researchers usually model and analyze the effect of saturation term on incidence
rate. For example, a research on the nonstandard numerical discretization of the SIR
epidemic model with saturated incidence rate and vaccination was conducted in [12]. In
their research, they proposed and analyzed an alternative nonstandard finite difference
scheme by applying nonlocal approximation. It was verified that the proposed model is
dynamically consistent with the corresponding continuous model. In advancing
research on curbing the spread of infectious diseases, a paper on the mathematical
modelling and analysis of an epidemic model with nonlinear incidence and general
recovery functions was carried out in [13]. In addition, authors in [14] investigated the
optimal control of a delayed SIRC epidemic model with a saturated incidence rate. The

JJoM | Jambura J. Math. 2 Volume 5 | Issue 1 | February 2023



M. K. Kolawole, et al.

analysis and optimal control of a multi-strain SEIR epidemic model with saturated
incidence rate and treatment was carried out in [15]. The results of their research
showed that with waning immunity in the absence of mitigating measures, each viral
strain will reach an equilibrium after the peak of infections. In a paper presented in [16],
the complex dynamics of a SEIR epidemic model with saturated incidence rate and
treatment were studied. They analyzed the dynamics of the model through stability and
bifurcation. The global stability of their endemic equilibrium was obtained using the
geometric approach and the optimal control problem was designed. The dynamical
analysis of a modified epidemic model with a saturated incidence rate and incomplete
treatment was conducted in [17]. In their paper, a modified epidemic model with
saturated incidence and incomplete treatment were addressed. The existence of all
equilibrium points and stability analysis of the model were analyzed and different
numerical methods were applied to the presented mathematical model to justify the
conducted analysis. A mathematical model for Covid-19 disease transmission dynamics
with the impact of saturated treatment, modeling, analysis and simulation were
investigated in [18]. It was concluded in their research that decreasing the transmission
rate for infectious alone is not sufficient to eradicate the disease because of the presence
of backward bifurcation. They recommended that adherence to COVID-19 protocols can
be helpful in mitigating the spread and demise of coronavirus. In [5],the impact of
saturation term on malaria transmission was investigated. The basic reproduction
number of the modified models was obtained using a next generation matrix. The
stability of both the disease-free and endemic equilibriums were established. The results
obtained via numerical simulation reveal that for proper treatment and eradication of
malaria, the saturation term and other factors cannot be overemphasized. Authors in
[19] conducted a mathematical analysis of COVID-19 using a SIR model with a convex
incidence rate. Research on ways of reducing the incidence rate of diseases is still
progressing. The dynamical behaviors of a modified SIR model with nonlinear
incidence and recovery rates were presented in [20]. Their findings showed that
successful treatment of patients at home can lead to minimizing the prevalence of the
disease. A home-treatment algorithm based on anti-inflammatory drugs to prevent
hospitalization of patients with early COVID-19 was studied in [21]. A mathematical
model of COVID-19 spread with self-isolation at home and hospitalized compartments
were presented in [22]. The impact of media-induced fear on a mathematical model of
COVID-19 with a non-linear incidence rate was presented in [23].

The influence of saturation terms on either the infected or susceptible populations has
been studied in all of these articles. In this research, we examined the influence of the
saturation term on both the susceptible and infected classes in an SEIR mathematical
model to determine where there is higher importance. We considered two cases namely
First Case where we have α1S and Second Case where we have α2 I which changes the
incidence rate to saturated incidence rate. I.e.

βSI
1 + α1S

and
βSI

1 + α2 I
.

2. Model
2.1. Model Formulation

In this paper, a four-compartment model was adopted and modified by incorporating
saturated incidence rate to study its effect on the model.
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2.1.1. Existing Model

Existing model by Al-Sheikh [24]:

dS
dt

= A− βSI − µS,

dE
dt

= βSI − (µ + ε) E,

dI
dt

= εE− (µ + r + d) I − cI,

dR
dt

= rI − µR + cI.

(1)

2.1.2. Proposed Model

This involves the application of the saturated incidence rate to study the effects of the
saturation term on the infected and susceptible classes. Proposed model following the
schematic diagram in Figure 1.

Figure 1. Schematic diagram of the proposed model

with the proposed model in equation (2):

dS
dt

= A− βSI
1 + α1S + α2 I

− µS,

dE
dt

=
βSI

1 + α1S + α2 I
− (µ + ε) E,

dI
dt

= εE− (µ + r + d + c) I,

dR
dt

= (r + c)I − µR.

(2)

2.2. Model Description

The classes of the model are S, E, I, and R, represent the susceptible, exposed, infected
and recovered classes respectively. We assume that the initial populations of each group
in the model are S(0) = s0, E(0) = e0, I(0) = i0, R(0) = r0, where α1 & α2 represent
the saturation terms. β represents the disease transmission coefficient, µ is the mortality
rate, r is the recovery rate, ε is rate of losing immunity, d is disease induced death , c is
the treatment rate and A is birth rate. A complete description of the parameters is given
in Table 1. Since variable R does not appear in the first three equations, it is enough to
analyze the following reduced system as shown in the equation (3).
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Table 1. Table of parameters and their numerical values

Parameters Description Values References
s0 Initial susceptible population 25 Assumed
e0 Initial exposed population 18 Assumed
i0 Initial infected population 12 Assumed
r0 Initial recovered population 7 Assumed
A Birth rate 48 Assumed
c Treatment rate 0.08 Assumed
β Disease transmission coefficient 0.3 Assumed
ε Rate of losing immunity 0.25 [25]
µ Mortality rate 0.5 Assumed
d Disease induced death 0.1 [25]
r Treatment rate 0.15 [25]

α1 , α2 Saturation term 0 ≤ αn < 1 n = 1, 2 Calibrated

3. Results and Discussions

In this section, we present the analytical and numerical results including their biological
interpretations. We first identify the existence and uniqueness of solution, investigate
the biological equilibria, the basic reproduction number, stability and sensitivity
analysis and ended by computing the numerical solutions to show the dynamical
behaviors numerically. We present this analysis in 2 different model cases.

3.1. First Case

The model is inclusive of saturation term of the susceptible individual through a
saturated incidence rate with a polynomial incorporation 1

1+α1S . Thus, as α2 = 0 from
equation (2) we have;

dS
dt

= A− βSI
1 + α1S

− µS,

dE
dt

=
βSI

1 + α1S
− (µ + ε) E,

dI
dt

= εE− (µ + r + d + c) I,

(3)

3.1.1. Existence and Uniqueness of Solution

Here, we apply a Lipchitz criterion to examine the existence and uniqueness of the model
solution.

Thus, from equation (3), let:

B1 = A− βSI
1 + α1S

−µS; B2 =
βSI

1 + α1S
− (µ + ε) E; B3 = εE− (µ + r + d + c) I ; B4 = (r + c) I−µR.

The following partial derivatives are obtained:
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For B1 = A− βSI
1+α1S − µS,

∣∣∣∣∂B1

∂S

∣∣∣∣ =
∣∣∣∣∣− Iβ

(1 + α1S)2 − µ

∣∣∣∣∣ < ∞,
∣∣∣∣ ∂B1

∂E

∣∣∣∣ = |0| < ∞,
∣∣∣∣ ∂B1

∂I

∣∣∣∣ = ∣∣∣∣ βS
(1 + α1S)

∣∣∣∣ < ∞,
∣∣∣∣∂B1

∂R

∣∣∣∣ = |0| < ∞.

For B2 = βSI
1+α1S − (µ + ε) E,

∣∣∣∣∂B2

∂S

∣∣∣∣ =
∣∣∣∣∣ βI

(1 + α1S)2

∣∣∣∣∣ < ∞,
∣∣∣∣∂B2

∂E

∣∣∣∣ = |(µ + ε) | < ∞,
∣∣∣∣∂B2

∂I

∣∣∣∣ =
∣∣∣∣∣− βS

(1 + α1S)2

∣∣∣∣∣ < ∞,
∣∣∣∣∂B2

∂R

∣∣∣∣ = |0 | < ∞.

For B3 = εE− (µ + r + d + c) I,∣∣∣∣∂B3

∂S

∣∣∣∣ = |0| < ∞,
∣∣∣∣∂B3

∂E

∣∣∣∣ = |ε| < ∞,
∣∣∣∣∂B3

∂I

∣∣∣∣ = |− (µ + r + d + c)| < ∞,
∣∣∣∣∂B3

∂R

∣∣∣∣ = |0| < ∞.

For B4 = (r + c) I − µR,∣∣∣∣∂B4

∂S

∣∣∣∣ = |0| < ∞,
∣∣∣∣∂B4

∂E

∣∣∣∣ = |0| < ∞,
∣∣∣∣∂B4

∂I

∣∣∣∣ = |(r + c)| < ∞,
∣∣∣∣∂B4

∂R

∣∣∣∣ = |−µ| < ∞.

The partial derivatives exist, continuous and are bounded, therefore the system of
equation (3) exist and has a unique solution in <4.

3.1.2. Biological Equilibria

1. Disease-free equilibrium
At the disease free-equilibrium, I = 0. let:

A− βSI
1 + α1S

− µS = 0,

βSI
1 + α1S

− (µ + ε) E = 0,

εE− (µ + r + d + c) I = 0,

(4)

From equation (4),

A− βSI
1 + α1S

− µS = 0,

A− 0 = µS,

S =
A
µ

,

(5)

Therefore, DFE;

(S∗, E∗, I∗) =
[

A
µ

, 0, 0
]

. (6)
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2. Endemic Equilibrium
At the endemic equilibrium, I 6= 0. The endemic equilibrium points are:

(S, E, I) = (S∗∗, E∗∗, I∗∗) , (7)

Hence, solving

S∗∗ =
(µ + ε) (Λ)

εβ− α1 (µ + ε) (Λ)

E∗∗ =
(Λ) [Aεβ− Aα1 (µ + ε) (Λ)− µε (µ + ε) (Λ)] [(µ + ε) (Λ)]

ε2β− α1ε (µ + ε) (Λ)

I∗∗ =
Aεβ (µ + ε) (Λ)− Aα1 ((µ + ε) (Λ))2 − µε ((µ + ε) (Λ))2

εβ− α1 (µ + ε) (Λ)

with

Λ = µ + r + d + c.

3.1.3. The Basic Reproduction Number

There are two diseases state but only one way to create new infections. Hence, Exposed
and Infected compartment of the model are concerned with from equation (3):

dE
dt

=
βSI

1 + α1S
− (µ + ε) E,

dI
dt

= εE− (µ + r + d + c) I.
(8)

We obtained the characteristics equation of matrix G, as: |G− λI| = 0. Hence,

∣∣∣∣∣ βAε
(µ+α1 A)(µ+ε)(µ+r+d+c) − λ

βA
(µ+α1 A)(µ+r+d+c)

0 0− λ

∣∣∣∣∣ = 0 (9)

(
βAε

(µ + α1A) (µ + ε) (µ + r + d + c)
− λ

)
(−λ) = 0

λ =
βAε

(µ + α1A) (µ + ε) (µ + r + d + c)
∨ λ = 0.

Therefore, the dominant eigenvalue is the required basic reproduction number R0.
Hence,

R0 =
βAε

(µ + α1A) (µ + ε) (µ + r + d + c)
. (10)
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3.1.4. Effect of α1 on the Basic Reproduction Number

To analyze the impact of α1 on the basic reproduction number R0, we evaluate equation
(10) using the baseline parameters presented in Table 1, obtain:

R0 =
5.783132530
0.5 + 48α1

.

Thus, as 0 ≤ α1 < 1, we have shown the effect of α1 on R0 in Table 2.

Table 2. Table showing the effect of α1 on R0

α1 Effect on R0
0.00 11.56626506
0.30 0.388129700
0.60 0.197376537
0.90 0.132337129

From Table 2, it could be observed that the basic reproduction number decreases
drastically as α1 progresses from 0 to 0.90. Hence, we can deduce that the disease will
eventually dies out when α1 is at peak because R0 < 1.

3.1.5. Stability Analysis

1. Local Stability of the Disease Free-Equilibrium
The system of equation (3) was linearized by setting

S− S1 = x, E = E, I = I; S = x + S1.

From this setting, we obtained

dx
dt

= A− βI (x + S1) (1 + α1S)−1 − µ (x + S1) ,

dE
dt

= βI (x + S1) (1 + α1S)−1 − (µ + ε) E,

dI
dt

= εE− (µ + r + d + c) I.

(11)

The resulting Jacobian matrix is

 ẋ
Ė
İ

=

 −µ 0 −βS1
0 − (µ + ε) 0
0 ε − (µ + r + d + c)

 x
E
I

+ Nonlinear Term.

(12)

At DFE, S = A
µ therefore by substituting S1 = A

µ yields

(−µ− λ) [(− (µ + ε)− λ) (− (µ + r + d + c)− λ)− 0]− βA
µ [0] = 0

(−µ− λ) (− (µ + ε)− λ) (− (µ + r + d + c)− λ) = 0
(13)

therefore,
λ = −µ ∨ λ = − (µ + ε) ∨ λ = − (µ + r + d + c) . (14)
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Since R0 < 1, all the eigenvalue are all negatives, hence the disease
free-equilibrium is locally asymptotically stable.

2. Local Stability of the Endemic Equilibrium
Let;

J=


−βI∗−2βS∗ I∗

(1+α1S∗)2 − µ 0 −βS∗
1+α1S∗

βI∗

(1+α1S∗)2 − (µ + ε) 0

0 ε − (µ + r + d + c)

 (15)

from equation (3). Analyzing the Jacobian matrix using the equilibrium points. The
characteristics equation of J is |J − λI| = 0. The resulting characteristics polynomial
is

a0λ3 + a1λ2 + a2λ + a3 = 0,

where,
a0 = 1
a1 = 2µ + ε + r + d + c
a2 = βI∗+2α1βS∗ I∗µ

(1+α1S∗)2 + βI∗+2α1βS∗ I∗ε
(1+α1S∗)2 + 2µ2 + 2µε + µr + µd + µc + εr + εd + εc

a3 =
(

βI∗+2α1βS∗ I∗

(1+α1S∗)2 + µ
)
(µ + ε) (µ + r + d + c) + β2S∗ I∗ε

(1+α1S∗)3 .

Using the Routh-Hurwitz criterion, it can be seen that all the eigenvalues of the
characteristics equation above have negative real part. Since a1a2−a3 > 0,
therefore the endemic equilibrium is locally asymptotically stable.

3. Global Stability of Disease-Free Equilibrium
Consider;

dE
dt

=
βSI

1 + α1S
− (µ + ε)E,

dI
dt

= εE− (µ + r + d + c)I.
(16)

where

Ro =
βAε

(µ + α1A) (µ + ε) (µ + r + d + c)
.

Let E = I1 and I = I2. Constructing a Lyapunov function:
V(t, S, E, I) = C1 I1 + C2 I2, where C1, C2 are constants,
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dV
dt

= C1 I1
1 + C2 I1

2

dV
dt

= C1

(
βSI2

1 + α1S
− (µ + ε)I1

)
+ C2 (εI1 − (µ + r + d + c)I2)

≤ (C2ε− C1(µ + ε)) I1 +

(
C2

βSI
1 + α1S

− C2(µ + r + d + c)
)

I2

≤ (C2ε− C1(µ + ε)) I1 +

(
C2

βA
µ + α1A

− C2(µ + r + d + c)
)

I2

≤ C2εI1 − C1(µ + ε)I1 + C2
βA

µ + α1A
I2 − C2(µ + r + d + c)I2

Let C1 =
1

(µ + ε)
and C2 =

βA
(µ + α1A)(µ + r + d + c)

≤
(

βAε

(µ + r + d + c)(µ + ε)(µ + α1A)
− 1
)

I1

+

(
βA

(µ + α1A)(µ + ε)
− (µ + r + d + c)

(µ + α1A)(µ + r + d + c)(µ + ε)

)
V1 ≤ (µ + r + d + c)(µ + ε) [Ro − 1] I.

It is imperative to note that V1 = 0 only when E = 0 as S0 = A
µ when t→ ∞. Based

on LaSalle’s Invariance principle. Hence, it is globally asymptotically stable
whenever R0 < 1.

4. Global Stability of the Endemic Equilibrium
For the global stability, Lyapunov function was constructed:

L (E, I) = εE + (µ + ε) I

L̇ (E, I) = ε

[
βSI

1 + α1S
− µE− εE

]
+ (µ + ε) [εE− (µ + r + d + c) I]

=
εβSI

1 + α1S
− (µ + ε) (µ + r + d + c) I

(17)

Substituting S = A
µ , we obtained:

L̇ (E, I) =
εβAI

µ + Aα1
− (µ + ε) (µ + r + d + c) I

= (µ + ε) (µ + r + d + c)
[

R0

(µ + Aα1)
− 1
]

I.
(18)

now, if I = 0 and R0 < 1 ensures that L̇ = 0. If R0 < 1, the DFE is globally
asymptotically stable and the disease may dies out.
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3.1.6. Sensitivity Analysis

Sensitivity analysis is a financial model that determines how target variables are affected
based on changes in other variables known as input variables. This model is also
referred to as what if or simulation analysis. It is a way of predicting the outcome of a
decision given a certain range of variables. In order to measure the impact of the model
parameters, we utilized the sensitivity index analysis using normalized sensitivity
index.

The sensitivity index with respect to the model parameter are obtained using

χ
β
R0

=
∂R0

∂β
× β

R0
(19)

since

R0 =
εβA

(µ + ε)(µ + Aα1)(µ + r + d + c)
.

Therefore,

∂R0

∂A
× A

R0
=

µ

µ + α1A
∂R0

∂ε
× ε

R0
=

µ

µ + ε

∂R0

∂µ
× µ

R0
=

µ2

ε (µ + ε)

∂R0

∂α1
× α1

R0
=

µα1

(µ + ε) ε

∂R0

∂r
× r

R0
=

r
(µ + r + d + c)

∂R
∂d
× d

R0
=

d
(µ + r + d + c)

∂R0

∂c
× c

R0
=

c
(µ + r + d + c)

∂R0

∂β
× β

R0
= 1.

By the parameter values in Table 1, we obtained the Sensitivity Index values for each
parameter in Table 3.

We observed that the sensitivity index of α1 in the mathematical model is highly
significant. Thus it is a parameter which impact cannot be ignored in disease
eradication.
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Table 3. Sensitivity index of each parameter evaluated with their base values

Parameter Sensitivity Index (R0)
A 0.02262
ε 1.33333
β 1
r -0.18722
d -0.12048
c -0.09639

α1 1.20000

3.1.7. Numerical Simulation

This section shows several numerical simulation results for first case, which refers to the
model equation (3). The results of the simulation are shown in Figure 2, Figure 3, and
Figure 4.

Figure 2. Effect of Saturation term on susceptible class with A = 48, µ =

0.5, β = 0.3, ε = 0.25, c = 0.08, d = 0.1, r = 0.15

3.2. Second Case

The model involves saturation term for the infected individual to study its significant
effect on the model. Hence the incident rate becomes 1

1+α2 I and as α1 = 0 from equation
(2). Such that;
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Figure 3. Effect of Saturation term on exposed class with A = 48, µ = 0.5, β =

0.3, ε = 0.25, c = 0.08, d = 0.1, r = 0.15

Figure 4. Effect of Saturation term on infected class with A = 48, µ = 0.5, β =

0.3, ε = 0.25, c = 0.08, d = 0.1, r = 0.15
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dS
dt

= A− βSI
1 + α2 I

− µS,

dE
dt

=
βSI

1 + α2 I
− (µ + ε) E,

dI
dt

= εE− (µ + r + d + c) I,

(20)

3.2.1. Existence and Uniqueness of Solution

Similar to first case, we apply the Lipchitz criterion to verify the existence and uniqueness
of the model. Hence, let:

Thus, from equation (20), let:

B1 = A− βSI
1 + α2S

−µI; B2 =
βSI

1 + α2 I
− (µ + ε) E; B3 = εE− (µ + r + d + c) I ; B4 = (r + c) I−µR.

The following partial derivatives are obtained:

For B1 = A− βSI
1+α2 I − µS,

∣∣∣∣∂B1

∂S

∣∣∣∣ =
∣∣∣∣∣− Iβ

(1 + α2 I)2 − µ

∣∣∣∣∣ < ∞,
∣∣∣∣ ∂B1

∂E

∣∣∣∣ = |0| < ∞,
∣∣∣∣ ∂B1

∂I

∣∣∣∣ = ∣∣∣∣ βS
(1 + α2 I)

∣∣∣∣ < ∞,
∣∣∣∣∂B1

∂R

∣∣∣∣ = |0| < ∞.

For B2 = βSI
1+α2 I − (µ + ε) E,

∣∣∣∣∂B2

∂S

∣∣∣∣ =
∣∣∣∣∣ βI

(1 + α2 I)2

∣∣∣∣∣ < ∞,
∣∣∣∣∂B2

∂E

∣∣∣∣ = |(µ + ε) | < ∞,
∣∣∣∣∂B2

∂I

∣∣∣∣ =
∣∣∣∣∣− βS

(1 + α2 I)2

∣∣∣∣∣ < ∞,
∣∣∣∣∂B2

∂R

∣∣∣∣ = |0 | < ∞.

For B3 = εE− (µ + r + d + c) I,∣∣∣∣∂B3

∂S

∣∣∣∣ = |0| < ∞,
∣∣∣∣∂B3

∂E

∣∣∣∣ = |ε| < ∞,
∣∣∣∣∂B3

∂I

∣∣∣∣ = |− (µ + r + d + c)| < ∞,
∣∣∣∣∂B3

∂R

∣∣∣∣ = |0| < ∞.

For B4 = (r + c) I − µR,∣∣∣∣∂B4

∂S

∣∣∣∣ = |0| < ∞,
∣∣∣∣∂B4

∂E

∣∣∣∣ = |0| < ∞,
∣∣∣∣∂B4

∂I

∣∣∣∣ = |(r + c)| < ∞,
∣∣∣∣∂B4

∂R

∣∣∣∣ = |−µ| < ∞.

The partial derivatives exist, continuous and are bounded, therefore the system of
equation (20) exist and has a unique solution in <4.

3.2.2. Biological Equilibria

1. Disease-free equilibrium
At the disease free-equilibrium (DFE), I = 0. If we let:
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A− βSI
1 + α2 I

− µS = 0,

A− 0 = µS,

S =
A
µ

,

(21)

Therefore, from equation (21), we obtained DFE

(S∗, E∗, I∗) =
[

A
µ

, 0, 0
]

. (22)

2. Endemic Equilibrium
Similarly, we compute the endemic equilibria for case 2:

(S, E, I) = (S∗∗, E∗∗, I∗∗) , (23)

Hence, solving

S∗∗ =
A
µ
− Aεβ− µ (µ + ε) (µ + r + d + c)

µε (β + µα2)

E∗∗ =
(µ + r + d + c) (Aεβ− µ)

ε (β + µα2)

I∗∗ =
Aεβ− µ (µ + ε) (µ + r + d + c)
(µ + ε) (µ + r + d + c) (β + µα2)

.

3.2.3. The Basic Reproduction Number

Here, we equally compute the basic reproduction number for case 2. Such that:

dE
dt

=
βSI

1 + α2 I
− (µ + ε) E,

dI
dt

= εE− (µ + r + d + c) I.
(24)

We obtained the characteristics equation of matrix G, as: |G− λI| = 0. Hence,

∣∣∣∣∣ βAε
µ(µ+ε)(µ+r+d+c) − λ

βA
µ(µ+r+d+c)

0 0− λ

∣∣∣∣∣ = 0 (25)

(
βAε

µ (µ + ε) (µ + r + d + c)
− λ

)
(−λ) = 0

λ =
βAε

µ (µ + ε) (µ + r + d + c)
∨ λ = 0.

JJoM | Jambura J. Math. 15 Volume 5 | Issue 1 | February 2023



On the Effects of Saturation Terms on A SEIR Epidemic Model. . .

Therefore, the dominant eigenvalue is the required basic reproduction number R0.
Hence,

R0 =
βAε

µ (µ + ε) (µ + r + d + c)
. (26)

3.2.4. Effect of α2 on the Basic Reproduction Number

As observed in (26) the basic reproduction number does not contain parameter α2. This
shows that the saturation term on infected individuals have no significant effect in
weighing down the basic reproduction number.

3.2.5. Stability Analysis

1. Local Stability of the Disease Free-Equilibrium
The system of equation (20) was linearized by setting

S− S1 = x, E = E, I = I; S = x + S1.

From this setting, we obtained

dx
dt

= A− βI (x + S1) (1 + α2 I)−1 − µ (x + S1) ,

dE
dt

= βI (x + S1) (1 + α2 I)−1 − (µ + ε) E,

dI
dt

= εE− (µ + r + d + c) I.

(27)

The resulting Jacobian matrix is

 ẋ
Ė
İ

=

 −µ 0 −βS1
0 − (µ + ε) 0
0 ε − (µ + r + d + c)

 x
E
I

+ Nonlinear Term.

(28)

At DFE, S = A
µ therefore by substituting S1 = A

µ yields

(−µ− λ) [(− (µ + ε)− λ) (− (µ + r + d + c)− λ)− 0]− βA
µ [0] = 0

(−µ− λ) (− (µ + ε)− λ) (− (µ + r + d + c)− λ) = 0
(29)

therefore,
λ = −µ ∨ λ = − (µ + ε) ∨ λ = − (µ + r + d + c) . (30)

Since all the eigen value are negative, therefore R0 < 1, and the disease
free-equilibrium is locally asymptotically stable.
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2. Local Stability of the Endemic Equilibrium
Let;

J=


−βS∗

1+α2 I∗ − µ 0 −βS∗(1+α2 I∗)+βS∗ I∗α2

(1+α2 I∗)2

βS∗
1+α2 I∗ − (µ + ε) 0

0 ε − (µ + r + d + c)

 (31)

To obtain the local stability of the endemic equilibrium, we set|J − λI| = 0 such
that;

a0λ3 + a1λ2 + a2λ + a3 = 0,

where,
a0 = 1
a1 = 2µ + ε + r + d + c
a2 = a2 = βI∗µ

1+α2 I∗ +
βI∗ε

1+α2 I∗ + 2µ2 + 2µε + µr + µd + µc + εr + εd + εc

a3 =
(

βI∗
1+α2 I∗ + µ

)
(µ + ε) (µ + r + d + c) + β2S∗ I∗ε

(1+α2 I∗)3 .

Using the Routh-Hurwitz criterion, it can be seen that all the eigenvalues of the
characteristics equation above have negative real part. Since a1a2 − a3 > 0 , then
the endemic equilibrium is locally asymptotically stable.

3. Global stability of Disease-Free equilibrium
To analyze the global stability of the model, we construct a Lyapunov function
L (E, I) = εE + (µ + ε) I:

L̇ (E, I) = ε

[
βSI

1 + α2 I
− µE− εE

]
+ (µ + ε) [εE− (µ + r + d + c) I]

=
εβSI

1 + α2 I
− (µ + ε) (µ + r + d + c) I

(32)

Substituting S = A
µ , we obtained

L̇ (E, I) =
εβAI

µ (1 + α2 I)
− (µ + ε) (µ + r + d + c) I

= (µ + ε) (µ + r + d + c)
[

R0

(1 + α2 I))
− 1
]

I
(33)

Now, if I = 0 and R0 < 1, this ensures that L̇ = 0. If R0 < 1, the DFE is globally
asymptotically stable and the existence of disease will be wiped.

4. Local stability of the Endemic Equilibrium
Consider the following system of equations;
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dS
dt

= A− βSI
1 + α2S

− µS,

dE
dt

=
βSI

1 + α2S
− (µ + ε)E,

dI
dt

= εE− (µ + r + d + c)I.

(34)

Linearizing by applying the substitution S = x + S∗, E = y + E∗ and I = z + I∗ into
above equations we have;

dx
dt

= A− β(x + S∗)(z + I∗)− [1 + α2(z + I∗)]−1 − µ(x + S∗),

dE
dt

= β(x + S∗)(z + I∗)− [1 + α2(z + I∗)]−1 − (µ + ε)(y + E∗),

dI
dt

= ε(y + E∗)− (µ + r + d + c)(z + I∗).

(35)

So,

dx
dt

= −βxz(1 + α2z)−1 − µx + higherorder + non− linear terms,

dE
dt

= −βxz(1 + α2z)−1 − y(µ + ε) + higheroder + non− linear terms,

dI
dt

= yε− z(µ + r + d + c) + higherorder + non− linear terms.

(36)

The Jacobian Matrix and Characteristic equations are resolved for, |JE∗ − λI| = 0,

JE∗ =

∣∣∣∣∣∣∣
− βz

1+α2z − µ 0 βx
1+α2

βz
1+α2z −(µ + ε) βx

1+α2

0 ε −(µ + r + d + c)

∣∣∣∣∣∣∣
Where |JE∗ − λI| = 0∣∣∣∣∣∣∣

−
(

βz
1+α2z + µ

)
− λ 0 βx

1+α2
βz

1+α2z −(µ + ε)− λ
βx

1+α2

0 ε −(µ + r + d + c)− λ

∣∣∣∣∣∣∣ = 0

The eigen values becomes;[
−
(

βz
1 + α2z

+ µ

)
− λ

]
[−(µ + ε)− λ] [−(µ + r + d + c)− λ] = 0

Let,

A = −
(

βz
1 + α2z

+ µ

)
, B = −(µ + ε), and C = −(µ + r + d + c)

JJoM | Jambura J. Math. 18 Volume 5 | Issue 1 | February 2023



M. K. Kolawole, et al.

then,
(A− λ)(B− λ)(C− λ) = 0

λ3 − (A + B + C)λ2 + [(AB + C(A + B)] λ− ABC = 0

Assume
a1 = (A + B + C), a2 = [(AB + C(A + B)] , a3 = ABC

.
The characteristic equation becomes

λ3 − a1λ2 + a2λ− a3 = 0

The eigen values of the characteristic equation have negative real parts, hence the
endemic equilibrium is Locally Asymptotically Stable.

5. Global Stability of the Endemic Equilibrium
Consider;

dE
dt

=
βSI

1 + α2 I
− (µ + ε)E,

dI
dt

= εE− (µ + r + d + c)I.
(37)

where
R0 =

βAε

µ (µ + ε) (µ + r + d + c)
.

Let E = I1 and I = I2. Using Lyapunov algorithm:
V(t, S, E, I) = C1 I1 + C2 I2, where C1, C2 are constant terms,

dV
dt

= C1 I1
1 + C2 I1

2

dV
dt

= C1

(
βSI2

1 + α2 I2
− (µ + ε)I1

)
+ C2 (εI1 − (µ + r + d + c)I2)

≤ (C2ε− C1(µ + ε)) I1 +

(
C2

βSI
(1 + α2)

− C2(µ + r + d + c)
)

I2

≤ (C2ε− C1(µ + ε)) I1 +

(
C2

βA
µ(1 + α2)

− C2(µ + r + d + c)
)

I2

≤ C2εI1 − C1(µ + ε)I1 + C2
βA

µ(1 + α2)
I2 − C2(µ + r + d + c)I2

Let C1 =
1

(µ + ε)
and C2 =

βA
µ(1 + α2)(µ + r + d + c)

≤
(

βAε

(µ + r + d + c)(µ + ε)(1 + α2)
− 1
)

I1

+

(
βA

µ(1 + α2)(µ + ε)
− (µ + r + d + c)

µ(1 + α2)(µ + r + d + c)(µ + ε)

)
V1 ≤ µ(µ + r + d + c)(1 + α2) [Ro − 1] I.
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Then V1 = 0 only when E = 0 in the model of equation (20) (second case) such
that So =

A
µ at t→ ∞. Based on LaSalle’s Invariance principle. Hence, it is globally

asymptotically stable whenever Ro < 1.

3.2.6. Sensitivity Analysis

Similar to first case, we compute the sensitivity index for second case. Such that,

∂R0

∂A
× A

R0
= 1

∂R0

∂ε
× ε

R0
=

µ

µ + ε

∂R0

∂µ
× µ

R0
= −1− µ

(µ + ε)
− µ

(µ + r + d + c)

∂R0

∂α2
× α2

R0
= 0

∂R0

∂r
× r

R0
= − r

(µ + r + d + c)
∂R
∂d
× d

R0
=

d
(µ + r + d + c)

∂R0

∂c
× c

R0
=

c
(µ + r + d + c)

∂R0

∂β
× β

R0
= 1.

By the parameter values in Table 1, we obtained the Sensitivity Index values for each
parameter in Table 4.

Table 4. Sensitivity index of each parameter

Parameter Sensitivity Index (R0)
A 1
ε 0.99999
µ 0.99999
β 0.59999
r -0.05556
d -0.11111
c -0.55555

α2 0

In this case the sensitivity of α2 in the model is 0. Thus in this case, its effect is negligible
in eradicating the disease.

3.2.7. Numerical Simulation

This section shows several numerical simulation results for second case, which refers to
the model equation (20). The results of the simulation are shown in Figure 5, Figure 6,
and Figure 7.
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Figure 5. Effect of Saturation term on susceptible class with A = 48, µ =

0.5, β = 0.3, ε = 0.25, c = 0.08, d = 0.1, r = 0.15

Figure 6. Effect of Saturation term on exposed class with A = 48, µ = 0.5, β =

0.3, ε = 0.25, c = 0.08, d = 0.1, r = 0.15

3.3. Discussion

The simulation result presented in Figure 2-7 reveals the effect of saturation term on the
present population of the model compartments in first and second case respectively. In

JJoM | Jambura J. Math. 21 Volume 5 | Issue 1 | February 2023



On the Effects of Saturation Terms on A SEIR Epidemic Model. . .

Figure 7. Effect of Saturation term on infected class with A = 48, µ = 0.5, β =

0.3, ε = 0.25, c = 0.08, d = 0.1, r = 0.15

Figure 2, the role of saturation term as examined on the susceptible population revealed
that the class population drastically increases to maximum as the saturation term
increases from to . This shows that increasing the awareness level of people to factors
capable of getting rid of diseases will stop them from moving from the susceptible class
to the exposed or infected class. Figure 3 shows that saturation parameter also has effect
on the exposed class. We observed that the exposed population was at its peak when the
saturation level was 0. This interprets that if there is no strategy to curtail the spread of
diseases, several people will get exposed. Figure 4 indicates that saturation term have
little or no effect on the infected class i.e. the main factors associated to saturation term
such as media induced fear, enlightenment and general knowledge of people against
diseases have better role on the susceptible population than the already infected group.
Figure 5 to 7 similarly revealed that saturation term is a parameter which cannot be
ignored in disease eradication.

4. Conclusion

Saturation term play a vital role on susceptible and infected individuals. In our results,
saturation term is more active on susceptible than infected individuals. Therefore, more
sensitization program through seminar and media will be more useful to susceptible class
than infected class during the eradication of diseases.
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