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ABSTRACT

The Graph Coloring Problem (GCP) is assigning different colors to certain elements in a graph based
on certain constraints and using a minimum number of colors. GCP can be drawn into optimization
problems, namely the problem of minimizing the color used together with the uncertainty in using
the color used, so it can be assumed that there is an uncertainty in the number of colored vertices.
One of the mathematical optimization techniques in dealing with uncertainty is Robust Optimization
(RO) combined with computational tools. This article describes a robust GCP using the Polyhedral
Uncertainty Theorem and model validation for electrical circuit problems. The form of an electrical
circuit color chart consists of corners (components) and edges (wires or conductors). The results obtained
are up to 3 colors for the optimization model for graph coloring problems and up to 5 colors for robust
optimization models for graph coloring problems. The results obtained with robust optimization show
more colors because the results contain uncertainty. When RO GCP is applied to an electrical circuit,
the model is used to place the electrical components in the correct path, so that the electrical components
do not collide with each other.

Keywords:
Robust Optimization; Graph Coloring Problem; Electricity Problem

Citation Format:

V. P. Balqis, D. Chaerani, and H. Napitupulu, ”Robust Coloring Optimization Model on
Electricity Circuit Problems”, Jambura J. Math., vol. 5, No. 1, pp. 139–154, 2023, doi:
https://doi.org/10.34312/jjom.v5i1.16393

1. Introduction

Graph coloring is a fundamental combinatorial optimization problem for coloring the
vertices of a given graph with a minimum number of colors so that adjacent vertices are
colored differently. There is a major challenge to constructing graph coloring, which is
finding the right number for a graph that requires all the vertices to be colored
differently [1]. In graph coloring, labels on graph elements are given based on some
constraints or conditions and the label is a color. Colors in a graph are usually assigned
to integers at the edges, vertices, or both, that is to the edges and the vertices of the
graph. In graph theory, several colors are used to label edges or vertices with a
constraint on using their color. If there is a color, it must be able to determine the vertex
to be colored so that no two adjacent vertices have the same color. There are also some
other graph coloring problems, for example, Edge Coloring and Face Coloring. In edge
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coloring, none of the vertices connected by two edges have the same color, and face
coloring is related to Geographic map coloring [2]. There are several previous studies
that discuss the optimization model for graph coloring problems, namely Diaz, et al. [3]
discusses the Branch & Cut algorithm based on polyhedral studies of integer linear
programming models to solve coloring problems, Nickel [4] discusses the ellipsoid
method approach that is used as a tool to prove the solvency of the polynomial-time of
combinatorial optimization problems, Hansen, et al. [5] discusses the consideration of
two linear programming formulations of the graph coloring problem by using
branch-and-cut-and-price algorithm computational experiments, Burke, et al. [6]
discusses vertex coloring in combinatorial optimization problems with integer
programming formulations to survey seven known vertex coloring formulations and
introduces a new formulation for vertex coloring with appropriate partitions on graphs,
Jabrayilov and Mutzel [7] discusses the formulation of integer linear programming with
partial ordering for vertex coloring problems in graphs for a large set of benchmark
graphs and randomly generated graphs of various sizes and densities, and Jovanović, et
al. [8] discusses the development of optimization models using weighted node coloring
combinatorial problems for strategic decision making, and so on.

Graph coloring is a traditional method and may not be able to produce an optimal
solution so in graph coloring problems it often requires an approach with other
optimization methods to maximize/minimize the objective function by considering the
existing constraints [9]. The problem for graph coloring can be related to optimization
problems, namely determining a vertex to be colored correctly, and also the number of
colorings given is minimal.

In its application, not all optimization problems can be obtained with objective functions
and constraint functions with certain conditions (certain), there are also optimization
problems with uncertain conditions (uncertain). As in the graph coloring problem, it can
be assumed that the number of vertices to be colored is indeterminate so that to obtain
optimal results an optimization method is needed that considers the uncertain situation
where the data obtained is unknown or incomplete, while the solution must be
determined. One of the optimization methods with uncertainty is the Robust
Optimization (RO) method. Robust Optimization (RO) is a methodology for solving
mathematical problems by assuming that the uncertain data is in a defined set of
indeterminate parameter values which is called the uncertainty set [10].

This article discusses the construction of Graph Coloring Robust Optimization models
with model validation applied to electrical circuit problems. This research was
conducted to obtain a new knowledge and development of an existing scientific field.
The purpose of this article is to find a solution to the problem of indeterminate graph
coloring so that a new way to solve the graph coloring problem is obtained. With model
validation on electrical circuit problems, it is hoped that it can provide an overview of
the application form of graph coloring questions to simple problems. Based on this
research, it is found that by constructing a Graph Coloring Robust optimization model,
can be used and applied to problems on a small to large scale, making it easier for
researchers to obtain optimal results so that it can be a solution to solving a problem.

2. Method

In this section, several materials related to the research topic, namely Graph Coloring,
Graph Coloring Problem Optimization Model, Graph Coloring in The Electricity Sector,

JJoM | Jambura J. Math. 140 Volume 5 | Issue 1 | February 2023



V. P. Balqis, et al.

Robust Optimization, Robust Counterpart, Robust Counterpart for Polyhedral
Uncertainty Sets.

2.1. Graph Coloring

Graph coloring is one type of graph labeling and is a branch of graph labeling in special
cases. In graph coloring, labeling is given based on existing constraints or conditions.
The label used is a color. In the graph, labeling can usually be done by assigning a value
(weight) to the edges, vertices, or both the edges and vertices of the graph [2].

Graph coloring is a fundamental combinatorial optimization problem to color the vertices
of a particular graph with the minimum number of colors so that adjacent vertices can
be colored differently [1]. Based on this, an optimization problem arises to determine the
minimum number of colors for nodes, this problem is usually referred to as the Graph
Coloring Problem (GCP).

There are three types of graph coloring, namely vertex coloring, edge coloring, and region
coloring [11]. Node coloring is the assignment of color to the vertices with every two
adjacent vertices having a different color. Side coloring is the assignment of colors to the
sides with every two adjacent sides having a different color. Regional coloring is giving
color to an area with every two neighboring areas having a different color [12].

(a) (b)

Figure 1. Example of: (a) Node Coloring, (b) Edge Coloring

Figure 2. Example of Region Coloring

2.2. Graph Coloring Problem Optimization Model

Jovanović, et al., in 2020 developed an optimization model for strategic decision making
using well-known combinatorial problems, such as the weighted node coloring problem
and the Traveling Salesman Problem. In this study, an optimization model for the vertex
coloring problem in the graph will be developed as follows [8]:
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β = min ∑
j

yj (1)

where β is the minimum number of colored points (yj).

There are four constraints from the optimization model of the node coloring problem
above, the first constraint defines if all nodes must be colored. These constraints are
formulated as follows:

∑
j

xij = 1, i ∈ V (2)

where xij is the node variable i which is colored j and V = {v1, v2, . . . , vn}.

The second constraint defines that there is at most one of the pair of vertices and edges
that receive a certain color. The second constraint is formulated as follows:

xij + xkj ≤ yj, ∀ (i, k) ∈ E, j = 1, .., n (3)

where xij and xkj are node variables i and k which are colored j and E = {e1, e2, . . . , en}.

The third and fourth constraints are conditions if the variables xij and yj are binary
variables. The third and fourth constraints are formulated as follows:

xij ∈ 0, 1 , i ∈ V, j = 1, .., n (4)

yj ∈ 0, 1 , j = 1, .., n (5)

The description of the set, parameters, and objective variables used in the model is as
follows

1. Set
V : Set of vertices that are not empty
E : The set of edges that connect a pair of nodes

2. Decision Variables
xij = 1 declares variable to have value 1 if and only if color j is assigned to node i;
xij : Node variable i which is colored j
yj = 1 declares variable to have value 1 if and only if color j is set to at least one of
the vertices;
yj : The variable that determines whether the sign (color) of j used.

2.3. Graph Coloring in The Electricity Sircuit

Maiti and Tripathy [13] in 2012 conducted a study on the application of graph coloring
for matching electrical circuits in electrical repositories. In this article, we discuss a
colored graph isomorphism-based model for matching two electrical circuits. The
procedure for matching two electrical circuits consists of two steps, first, saving the
circuit in the database in the form of a colored graph and then matching the input circuit
using an isomorphism graph. This study aims to determine the compatibility of two
circuits using Luellau’s Algorithm and Ohlrich’s Algorithm [13].
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An electrical circuit consists of a set of different components and is connected by wires or
conducting materials. Electrical circuits can be converted into graphs where the vertices
are the components of the electrical circuit and the edges are the wires or conductors. In
this model, the series is represented as a color-weighted undirected graph:

1. Nodes based on each component or terminal section such as a diode consists of 2
terminals so that it can be represented by two D+ and D- nodes connected with W
as the connection node.

2. The color of the node is determined based on the electrical component it represents.
For example, Resistors are always red in Figure 4.

3. The weight of the node is the value of the component itself. For example, a resistor
is weighed by its resistance value. However, this is optional if the component is
generic like Ground.

4. The nodes are connected in the graph if they are connected in the circuit.

Figure 3. Half-wave rectifier circuit diagram. Source: [13]

The half-wave rectifier circuit diagram is converted into a graph consisting of 5
components, Ground (G), Oscilloscope (O), Signal Generator (V), Diode (D), and
Resistor (R).

Figure 4. Electrical circuit graph. Source: [13]

Each component in the circuit is represented as a vertex in the graph. For example, for
diodes D+ and D-, an oscilloscope with two channels is represented by O+1, O+2, and
O-1 and O-2. Resistor and Ground have orientations that are not important so they are
simply represented by one node. The anode of the oscilloscope channel has the same
components and functions so that it has the same color. The sides in the graph represent
the relationship between each component in the series.
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2.4. Robust Optimization

In real-world problems, optimization problems in the presence of uncertainty in their
parameters can be solved in a way to find out the result of the computed solution being
highly inappropriate, suboptimal, or both (potentially worthless). The optimization
related to the uncertainty parameter is Robust Control. Robust optimization focuses on
the theoretical concepts of traditional optimization, especially algorithms, geometry, and
tractability, in addition to using modeling will obtain results that can generally be used
to calculate Robustness [14].

Robust Optimization (RO) is a model, combined with computational tools, to solve
optimization problems with uncertain data and multiple uncertainty sets [15]. RO
considers a deterministic uncertainty model consisting of sets with the ability to change
the parameters of a function to obtain the best decision [16]. Several things can cause
optimization problems to have indeterminate parameters, including
measurement/rounding errors, prediction/estimation errors, implementation errors
[17].

A linear optimization model, in general, can be expressed in the following equation

min
x
{cTx : Ax ≤ b} (6)

where c ∈ Rn, x ∈ Rn, A ∈ Mm×n(R), b ∈ Rm.

Referring to [15] three parameters can be assumed to be indeterminate, namely
parameters c, A, b, so that model (6) can be expressed in the general form of an
indefinite linear optimization model as follows

min
x
{cTx : Ax ≤ b | (c, A, b) ∈ U} (7)

There are three basic assumptions in Robust Optimization (RO) [18], namely:

1. All decision variables are ”here and now” namely the acquisition of numerical
values as a result of solving problems before the actual value of the original data is
known.

2. The decision-maker is responsible for the decision to be made with the actual data
in the uncertainty set U .

3. All constraints of the problem are not necessarily ”hard”, that is, the decision-maker
cannot violate the existing constraints even though all data are in the uncertainty
set U .

In addition to the three basic assumptions above, there are several additional
assumptions, namely:

1. If the uncertainty is in the objective function, then the problem can be changed by
adding the variable t into the objective function so that the uncertainty can appear
in the constraint function. From the general model (7), the objective function cTx is
replaced by an additional variable with t ≥ cTx and t ∈ R so that it becomes

min
x
{t : cTx≤t, Ax ≤ b | (c, A, b)∈U} (8)

or
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min
x
{t : cTx− t ≤ 0, Ax ≤ b | (c, A, b)∈U} (9)

Therefore, the uncertainty has disappeared from the objective function.
2. If there is any uncertainty on the right side, it can be translated by adding variable

xn+1 = −1.
3. The set of uncertainty U can be replaced with convex hull U , which is the smallest

convex set of U . To obtain a feasible solution to U , you can take the supremum
of the left-hand side constraints U , so that the objective function will produce an
optimal value if the convex hull U has a maximum value.

4. Robustness to U can be illustrated constraint-wise.

2.5. Robust Counterpart

The robust Counterpart (RC) is part of the uncertainty problem. A feasible/optimal
solution for RC is called a Robust feasible/optimal solution for an indeterminate
problem. RC is used as a decision based on ”real life” problems to obtain the Robust
optimal solution [19].

Assuming that c ∈ Rn and b∈Rm are definite, so that model (7) can be reformulated and
called the RC problem is as follows [18]

min
x
{cTx : A(ζ)x ≤ b | ∀ ζ ∈ Z} (10)

min
x
{cTx : aT

i (ζ)x ≤ bi | i = 1, . . . , m, ∀ ı∈ Z} (11)

where Z ∈ RL which denotes a user-defined set of primitive uncertainties. Solution
x ∈ Rn is a feasible solution which is called Robust feasible if it satisfies the indefinite
constraint A(ζ)x ≤ b for all realizations ∈ Z .

Based on the previous assumptions, namely c ∈ Rn and b ∈ Rm is certain, then the
indefinite parameter is A∈Mm×n(R). Because Robust is assumed to be constraint-wise,
the single constraint in the model (11) becomes

(a + Pζ)Tx ≤ b, ∀ ζ∈ Z (12)

where (a + Pζ) is an affine function of the primitive uncertainty parameter ζ ∈ Z , a ∈
Rn and P ∈ Mn×L (R).

Furthermore, there are two ways to determine ζ, namely first, by applying the Robust
reformulation technique to exclude for all quantifications. The second is to apply an
adversarial approach. In this study, only the first method is used, which consists of three
steps and produces a computationally tractable RC with a limited number of constraints.

2.6. Robust Counterpart for Polyhedral Uncertainty Sets

The set of uncertainty in the determination of ζ consists of the set of box, ellipsoidal, and
polyhedral uncertainties. In this study, we only assume that the uncertainty parameter is
in the polyhedral uncertainty set. According to [18] the set of polyhedral indeterminacy
can be defined as follows
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Z={ζ : Dζ + q ≥ 0} (13)

where D∈Rm×L, ı∈RL and q∈Rm. So for the set of uncertainty U can be formulated as
follows:

U={a|a = (a + Pζ) , Dζ + q ≥ 0} (14)

To obtain an RC formulation with a polyhedral uncertainty set, equation (13) can be
applied to equation (12) so that it becomes

(a + Pζ)Tx ≤ b, ∀ ζ : Dζ + q ≥ 0 (15)

There are three steps to the approach using the first method, namely:

1. Worst Case Reformulation

max
ζ:Dζ+q≥0

(a + Pζ)Tx ≤b

aT x+ max
ζ:Dζ+q≥0

(
PT x

)T
ζ ≤b

(16)

2. Duality Convert the primal shape of the model (16) to the dual shape. To make it
easier to convert the primal to dual form, the rules of the reflection transformation
or the reflection of the primal problem to the dual problem can be used as shown
in Table 1 which refers to [20].

Table 1. Correspondence rules for primal-dual relations

Primal Dual
Objective Function mincT x maxbT y
Variable xi ≥ 0 i th constraint AT

i y ≤ ci
Variable xi unrestricted i th constraint AT

i y = ci
Constraints j th constraint Ajx = bj j th variable yj unrestricted
Constraints j th constraint Ajx ≥ bj j th variable yj ≥ 0

Coefficient Matrix A =


A1
A2
...

Am

 AT =
[

A1 A2 · · · Am
]

Right-hand-side Vector b Vector c
Cost Coefficient Vector c Vector b

The primal form of the model (16) is

max
ζ:Dζ+q≥0

(
PT x

)T
ζ . (17)

So the dual problem form for model (17) is

min
w
{qT w : −DT w = PT x, w ≥ 0} or min

w
{qT w : DT w = −PT x, w ≥ 0} . (18)
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By substituting model (18) into the model (16) it becomes

aT x+min
w
{qT w : DT w = −PT x, w ≥ 0} ≤b. (19)

3. Robust Counterpart (RC) Formulation
After obtaining the minimization form in the model (19), the constraint applies to
at least one w. The final formulation of RC was obtained

∃w : aT x + qT w ≤ b, DT w = −PT x, w ≥ 0. (20)

The constraint in equation (20) is in the form of Linear Programming (LP). If the set
can be described well with linear constraints then it can be traced computationally
tractable [21]. For the Tractable Formulation with Polyhedral Uncertainty Set, it can
be seen in Table 2.

Table 2. Formulation of tractable polyhedral uncertainty set

Uncertainty Set Z Robust Counterpart Tracktibility

Polyhedral Dζ + q ≥ 0
aT x + qT w ≤ b
DT w = −PT x

w ≥ 0
Linear Programming (LP)

3. Results and Discussions

This section discusses the Graph Coloring Problem Optimization Model Formulation,
Optimization Uncertainty Model Formulation Graph Coloring Problem, Robust
Counterpart Formulation of Graph Coloring with Polyhedral Uncertainty Sets,
Numerical Experiments, and Analysis of Numerical Experimental Results.The
difference between this study and previous research which is similar to the research
conducted by Jabrayilov and Mutzel [7] is that this study discusses integer linear
programming on vertex coloring probles using partial ordering, while in this study
using integer linear programming models specifically for vertex coloring problems and
as a development it will viewed against the problem of uncertainty with the help of
Robust Optimization model.

3.1. Graph Coloring Problem Optimization Model Formulation

The optimization model for the graph coloring problem consists of an objective function
to minimize the number of colors at the vertices which is formulated as follows:

β = min ∑
j

yj . (21)

This study uses an objective function because the main problem of coloring the graph
vertices is to determine the minimum number of colors in the vertices. In addition, the
graph coloring optimization model consists of four constraints as in equation (2)-(5). So
the optimization model of the graph coloring problem is as follows:
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β =min ∑
j

yj ,

s.t ∑
j

xij =1, i ∈ V,

xij + xkj ≤ yj, ∀ (i, k) ∈ E, j =1, .., n,

xij ∈ 0, 1 , i ∈ V, j =1, .., n,

yj ∈ 0, 1 , j =1, .., n.

(22)

3.2. Optimization Uncertainty Model Formulation Graph Coloring Problem

The challenge in the graph coloring problem is to determine the number of color vertices
to be colored precisely so that all neighboring vertices have different colors. Therefore,
the uncertainty parameter in this study is β. The uncertainty that lies in the objective
function causes a variable to be given to limit the objective function, for example the
variable is t, so that the optimization model for the graph coloring problem in (22) can be
rewritten into the following equation:

min t

s.t cTy ≤t,

∑
j

xij =1, i ∈ V,

xij + xkj ≤ yj, ∀ (i, k) ∈ E, j = 1, .., n,

xij ∈ 0, 1 , i ∈V, j = 1, .., n,

yj ∈ 0, 1 , j = 1, .., n,

c ∈U .

(23)

3.3. Robust Counterpart Formulation of Graph Coloring with Polyhedral Uncertainty Sets

Assume that c is uncertain and the uncertainty set U has the form U = c | c = c +
Pζ, ζ ∈ Z}, so it can be formulated as follows

min t ,

s.t (c + Pζ)Ty ≤ t,

∑
j

xij = 1, i ∈ V,

xij + xkj ≤ yj, ∀ (i, k) ∈ E, j = 1, .., n,

xij ∈ 0, 1 , i ∈V, j = 1, .., n,

yj ∈ 0, 1 , j = 1, .., n,

ζ ∈Z .

(24)

Next, assume that Z is a polyhedral uncertainty set of the form Z={ζ : Dζ + q ≥ 0},
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where Z∈RL denotes the primitive uncertainty set. Solution x∈Rn is a feasible solution
called Robust feasible if it satisfies the indefinite constraint (c + Pζ)Ty ≤ t for all
realizations ζ∈ Z .

Robust Counterpart formulation with Polyhedral uncertainty set can be obtained
through three steps as follows.

• Step 1. Worst case reformulation
In equation (24) it is equivalent to the worst case reformulation as follows

cTy + max
ζ:Dζ+q≥0

((Py)Tζ) ≤ t . (25)

• Step 2. Duality
Take the dual of the maximization problem in equation (25) so that it is equivalent
to

cTy + min
w

qTw : DTw = −PTy, w ≥ 0 ≤ t. (26)

• Step 3. Robust Couterpart
After the minimization form of equation (26) is obtained, the constraint holds for at
least one w. So that the final RC formulation is obtained:

∃w : cTy + qTw ≤ t, DTw = −PTy, w ≥ 0. (27)

The form of equation (27) can be re-expressed in the form of sigma and index, so
that the Robust Counterpart model with polyhedral uncertainty set graph coloring
problem is as follows:

min t ,

s.t
n

∑
j=1

cjyj +
M

∑
m=1

qmwm ≤ t,

∑
j

xij = 1, i ∈ V,

xij + xkj ≤ yj, ∀ (i, k) ∈ E, j = 1, .., n,
M

∑
m=1

Dmlwm = −
n

∑
j=1

Pjyj, l = 1, .., L

xij ∈ 0, 1 , i ∈ V, j = 1, .., n,

yj ∈ 0, 1 , j = 1, .., n,

wm ≥ 0.

(28)

3.4. Numerical Experiments on Electrical Circuit Problems

Referring to [13], there is an electrical circuit that is converted into a color graph with 13
vertices and 15 edges as shown in Figure 5. The complete vertices and edges in Figure 5
are as follows:
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Table 3. Table of vertex variables and its components

Vertex Component Vertex Component Vertex Component
1 V+ 6 D−0 11 W2
2 W0 7 W1 12 G
3 O+

2 8 O+
1 13 V−

4 O−2 9 O−1
5 D+

0 10 R0

Table 4. Edges table and description

Edge Description Edge Descriptio Edge Description
e1 (1,2) e6 (13,1) e11 (8,9)
e2 (2,3) e7 (2,5) e12 (9,11)
e3 (3,4) e8 (5,6) e13 (7,10)
e4 (4,11) e9 (6,7) e14 (10,11)
e5 (11,13) e10 (7,8) e15 (11,12)

Based on the data in Table 3 and Table 4, the results of the calculation using the Graph
Coloring Optimization Model in equation (23) are presented in Table 5.

Table 5. Results of numerical experiments on optimization of graph coloring
problems in electrical circuits

Vertex (i) Color (j) Variable (xij) Vertex (i) Color (j) Variable (xij)
1 Green x14 8 Red x86
2 Yellow x25 9 Yellow x95
3 Green x34 10 Yellow x105
4 Yellow x45 11 Green x114
5 Green x54 12 Yellow x125
6 Yellow x65 13 Yellow x135
7 Green x74

Based on Table 5, it can be seen that the number of colors used is 3 colors, so the minimum
value for β is 3. Suppose the color code used is 4 = Green, 5 = Yellow, 6 = Red. In Table 5,
the value of the variable xij means that node i is given the color j, for example x14 means
that node 1 is given color 4, namely Green. The number of color codes in the calculation
is as many as the existing vertices, but the number of colors chosen to color the graph
in this case is 3. A graph whose vertices are colored based on the results from Table 5 is
presented in Figure 5.

Based on the data in Table 3 and Table 4, the results of the calculations using the Robust
Coloring Optimization Model with the Polyhedral Uncertainty Set in equation (28) are
presented in Table 6.

Based on Table 6, it can be seen that the number of colors used is 5 colors, so the minimum
value for t is 5. Suppose the color code used is 1 = Purple, 2 = Yellow, 7 = Green, 10 =
Orange, 11 = Brown. In Table 6, the value of the variable xij means that node i is given
the color j, for example x17 means that node 1 is given the color 7 which is Green. The
number of color codes in the calculation is as many as there are vertices, but the number
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Figure 5. Optimization of graph coloring problems in electric circuits

Table 6. Results of numerical experiments on robust optimization models for
graph coloring problems in electric circuits

Vertex (i) Color (j) Variable (xij) Vertex (i) Color (j) Variable (xij)
1 Green x17 8 Brown x811
2 Purple x21 9 Purple x91
3 Green x37 10 Yellow x102
4 Purple x41 11 Orange x1110
5 Green x57 12 Purple x121
6 Brown x611 13 Yellow x132
7 Purple x71

of colors chosen to color the graph in this case is 5. A graph whose vertices are colored
based on the results from Table 6 is presented in Figure 6.

Figure 6. Robust optimization of graph coloring problems in electric circuits
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3.5. Analysis of Numerical Experiments Results

Graph Coloring Problem using Robust Optimization Model with Polyhedral
Uncertainty Set produces Linear Programming form. Based on this, the Robust
Optimization Model on the Graph Coloring Problem produces a computationally
tractable solution. The optimal solution of the objective function of Graph Coloring
Problem Optimization Model and Robust Optimization Model of Graph Coloring
Problems with Polyhedral Uncertainty Sets is in Table 7.

Table 7. Numerical experiment optimal solution

Graph Coloring Problem Robust Optimization Model with
Optimization Model Polyhedral Uncertainty Set on

Graph Coloring Problems
Number of 3 colors 5 colorscolors used

Based on the table above, the acquisition of the number of colors using the Robust
Optimization Model produces more numbers than the Graph Coloring Problem
Optimization Model. The difference in the number of colors used in the RC
Optimization Model is due to the uncertainty in the model.

In the problem of Electrical Circuits, these colors are used as a way to arrange electrical
components on the appropriate path. If the two electrical components that are connected
to each other use different colors, then the electrical components are on the right track.
Based on this, the Robust Optimization Model on Graph Coloring Problems can be used
as a way to form electrical circuits with optimal paths.

4. Conclusion

The Graph Coloring problem optimization model can be formulated into a Robust
Optimization Model by using the uncertainty parameter in the number of colors used.
Robust Optimization Model is solved by using Polyhedral Uncertainty Set to produce a
computationally tractable solution.

The Electric Circuit Problem can be solved using Robust Optimization Model with
Polyhedral Uncertainty Set. The results of numerical experiments using the Graph
Coloring Problem Optimization Model obtained the minimum number of colors used as
many as 3 colors, while the results of numerical experiments using the Graph Coloring
Problem Robust Optimization Model obtained the minimum number of colors used as
many as 5 colors. Obtained if the objective function of the Graph Coloring Robust
Optimization Model has been met. This is because, the minimum number of colors used
in the node has been obtained and the optimal solution has been obtained.
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