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ABSTRACT

The Adomian decomposition method’s effectiveness has been demonstrated in recent research, the process
requires several iterations and can be time-consuming. By breaking down the source term function
into series, the current work introduced a new decomposition approach to the Adomian decomposition
method. As compared to the conventional Adomian decomposition approach, the newly devised method
hastens the convergence of the solution. Numerical experiments were provided to show the superiority
qualities.
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1. Introduction

The Adomian Decomposition Technique (ADM), developed by Manafianheris [1],
separates an equation into linear and nonlinear components. Equations involving
nonlinear functions are solved using this technique. To provide solutions that take the
form of recursive series, Adomian polynomials are used. Saray [2], discovered that
problems involving these equations may be reduced to a set of algebraic equations by
using a method for solving Volterra integro-differential equations. Olayiwola, et al. [3]
showed how a modified variational iteration approach may be used to solve the
numerical solution of the generalized Burger’s-Huxley equation (MVIM). The solution
proved to be more successful than similar strategies that required less computing work.
Olayiwola, et al. [4] described how the modified variational iteration approach
converges to the precise solution after an iteration for the solution of the class of initial
and boundary value problems. As a result, the approach is effective and trustworthy for
solving bantu-type differential equations. Alaje, et al. [5] discovered that an analytical
strategy of modified initial guess homotopy perturbation is used to solve the
Korteweg-de vries equation. The Banach fixed point theorem was used to demonstrate
the method’s convergence as well as a sequence of arbitrary orders.
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The multi-wavelets Galerkin method may be used to tackle second-order problems that
are both linear and nonlinear. Volterra integro-differential equations are resolved using
the operational integration matrices and the wavelet transform matrix. Ibrahim, et al. [6]
looked at the original solution to the second-order nonlinear Fredholm
integro-differential equation, which involved applying the Simpson method to turn the
Fredholm IDE into a collection of nonlinear algebraic equations. Siweilam [7] created
the Variational Iteration Methodology (VIM), which resolves the bulk of difficulties
encountered in computing Adomian polynomials using the Adomian decomposition
method, to solve integro-differential equations, which are difficult to solve analytically.
Using the fourth-order derivatives block approach, Ogunniran, et al. [8] devised the
collocation and interpolation of an assumed derivative and a basic function. A method
for resolving ordinary differential equations’ two-point singular nonlinear boundary
value issues. Alaje, et al. [9] discovered that by combining the modified general
Lagrange multiplier technique with the modified homotopy perturbation approach, the
solution of linear and nonlinear fractional order integro-differential equations may be
found. According to Olayiwola, et al. [10], a modified initial guess variational iteration
approach may solve non-homogeneous variable coefficient fourth-order parabolic
partial differential equations. According to Olayiwola, et al. [11], a comparison of
numerical and analytical solutions to telegraph equations demonstrates that the
numerical scheme of solving telegraph equations is successful when utilizing a modified
variational iteration approach.

According to Alqarni, et al. [12], spectroscopic data, heat transport issues, and physical
phenomena in engineering may all be solved using integral-differential equations. The
third-order derivatives of unknown functions are contained in integro-differential
equations (IDEs) known as third-order IDEs. Haar functions are employed in
integro-differential equations, both linear and nonlinear, to approximate the third-order
derivative. Lower-order derivatives and the solution to the mystery are produced
through integration. Several partial differential equations are both linear and nonlinear
that Chen [13] and Rohaninasab, et al. [14] have been utilized to solve. It has been
proven to be a successful technique for getting numerical solutions. The Legendre
collocation spectral method may be used to solve high-order linear Volterra-Fredholm
integro-differential equations under mixed situations. Nonlinear Volterra integral and
integro-differential equations may be used to study a variety of scientific topics,
including heat transport, the spread of infectious illnesses, semiconductor neutron
diffusion, and others [15]. Non-orthogonal polynomials can also be decomposed using
the Laplace Adomian approach. The Adomian decomposition technique is a summation
of an infinite convergent series without any restrictive constraints. When solving
functional equations that are no longer valid, the Laplace-Adomian decomposition
method combines two efficient techniques. The modified Laplace Adomian
Decomposition Technique (LADM), which uniformly distributes the source function
before performing Laplace Adomian Decomposition, is used to solve the Volterra
integral and integro-differential equations based on Rani and Masra [16].

To estimate the solutions of nonlinear partial differential equations, the Laplace
transform employs the decomposition method. According to Jimoh [17], many
academics have explored third-order integro-differential equations, notably the
nonlinear variety in closed form. The answer is then integrated to acquire the
lower-order derivatives, while the trapezoidal approach is used to derive the unknown
function itself. The power of series and canonical polynomials is used to approximate
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the largest derivatives in the topics studied. The polynomial issues presented by
Olayiwola and Kareem [18] may be solved analytically using a variety of approaches;
however, some of these approaches are challenging and call for several iterations that
may be challenging to solve and take a long time to arrive at an approximation. This
method is applied in numerous fields, including engineering, economics, chemical
kinetics, fluid mechanics, etc. Olayiwola, et al. [19] explained how to develop Maple
code for the method and simulation of the generalized Burger-equation Fisher’s
solution. With less computation, the results were produced. Kareem and Olayiwola [20]
discovered that the Homotopy perturbation method was used to solve
Integro-differential equations with two-point boundary conditions, and the numerical
results obtained proved to be a very accurate algorithm for solving problems of linear
Fourth-order Integro-differential equations.

The Laplace transform employs the decomposition method to approximate the solutions
of nonlinear partial differential equations. According to Amin, et al. [21], many scholars
have explored third-order integro-differential equations, especially the nonlinear variety
in closed form. The answer is then integrated to create the lower-order derivatives,
while the trapezoidal approach is used to derive the unknown function itself. The
power of series and canonical polynomials approximate the largest derivatives in the
topics studied. This method is utilized in numerous areas, including engineering,
economics, chemical kinetics, fluid mechanics, etc.

2. Model and Modification

The modification was carried out by decomposing the source term function into series of
the form,

h (x) =
+∞

∑
j=0

hi (x) (1)

and the new recursive relation was obtained as the theoretical aspect of the method:

u0 (x) = h0 (x) ,

u1 (x) = h1 (x) + h2 (x) + λ
∫ x

a
k (x, t) (L (u0 (x)) + P0) dt,

u2 (x) = h3 (x) + h4 (x) + λ
∫ x

a
k (x, t) (L (u0 (x) + u1 (x)) + P1) dt,

...

uj+1 (x) = h2(j+1) (x) + h2(j+1)−1 (x) + λ
∫ x

a
k (x, t)

(
L
(
uj (x) + uj−1 (x)

)
+ P1

)
dt.

(2)

In case of non-linear, the newly modified Adomian decomposition method (MADM)
accelerates the convergence of the solution (MADM) faster than Standard Adomian
Decomposition Method (SADM). Assuming that the nonlinear function is F (u (x)) can
be evaluated by using the expression,
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Pn =
1
n!

dn

dλn

[
F

(
n

∑
i=0

λiui

)]
λ=0

(3)

where, n = 0, 1, 2, . . . and i = 2, 3, 4, . . . .

Therefore, below are few of Adomian polynomials:

P0 = F (u0) ,
P1 = u1F′ (u0) ,

P2 = u2F′ (u0) +
1
2!

u2
1F′′ (u0) ,

P3 = u3F′ (u0) + u1u2F′′ (u0) +
1
3!

u3
1F′′′ (u0) ,

P4 = u4F
′
(u0) +

(
1
2!

u2
2 + u1u3

)
F′′ (u0) +

1
2!

u2
1u2F′′′ (u0) +

1
4

u4
1F(iv) (u0) .

(4)

Two important observations can be made here. First, P0 depends only on u0, P1 depends
only on u0 and u1 , P2 depends only on u0 , u1 and u2, and so on.

Secondly, substituting these P′j s in (2) gives:

F (u) = P0 + P1 + P2 + P3 + . . .

= F (u0) + (u1 + u2 + u3 + . . . ) F′ (u0) +
1
2!
(
u2

1 + 2u1u2 + 2u1u3 + u2
2
)

F′′ (u0)

+
1
3!
(
u3

1 + 3u2
1u3 + 6u1u2u3 + . . .

)
F′′′ (u0) + . . .

= F (u0) + (u− u0) F′ (u0) +
1
2!

(u− u0)
2 F′′ (u0) + . . .

In the following, we will calculate Adomian polynomials for several linear terms that
may arise in nonlinear integral equations.

Case 1. The first four Adomian polynomials for F (u) = u2 are given by

P0 = u2
0,

P1 = 2u0u1,

P2 = 2u0u2 + u2
1,

P3 = 2u0u3 + 2u1u2.

(5)

Case 2. The first four Adomian polynomials for F (u) = u3 are given by
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P0 = u3
0,

P1 = 3u2
0u1,

P2 = 3u2
0u2 + 3u0u2

1,

P3 = 3u2
0u3 + 6u0u1u2 + u3

1.

(6)

Case 3. The first four Adomian polynomials for F (u) = u4 are given by

P0 = u4
0,

P1 = 4u3
0u1,

P2 = 4u3
0u2 + 6u2

0u2
1,

P3 = 4u3
0u3 + 4u3

1u0 + 12u2
0u1 + u2.

(7)

Case 4. The first four Adomian polynomials for F (u) = sin u are given by

P0 = sin u0,
P1 = u1 cos u0,

P2 = u2 cos u0 −
1
2!

u2
1 sin u0,

P3 = u3 cos u0 − u1u2 sin u0 −
1
3!

u3
1 cos u0.

(8)

Case 5. The first four Adomian polynomials for F (u) = cos u are given by

P0 = cos u0,
P1 = −u1 sin u0,

P2 = −u2 sin u0 −
1
2!

u2
1 cos u0,

P3 = −u3 sin u0 − u1u2 cos u0 +
1
3!

u3
1 sin u0.

(9)

Case 6. The first four Adomian polynomials for F (u) = exp (u) are given by

P0 = exp (u0) ,
P1 = u1 exp (u0) ,

P2 =

(
u2 +

1
2!

u2
1

)
exp (u0) ,

P3 =

(
u3 + u1u2 +

1
3!

u3
1

)
exp (u0) .

(10)
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3. Results and Discussions
3.1. Results

Some research results are given in 3 different case examples.

Example 1. Consider the first order linear Volterra Integro-differetial Equation:

u′ (x) = 1−
∫ x

0
u (t) dt 0 ≤ x, t ≤ 1 (11)

with initial condition u (0) = 0.

Solution. The exact solution is u (x) = sin x. By using New Modification Adomian
Decomposition Method (NMADM) give:

∫ x

0
u′ dx = u (x) ,∫ x

0
1 dx = x,

then

u (x) = x−
∫ x

0

∫ x

0
u (t) dtdx.

Let r = x. Expand taylor (r, x,10):

x
a0 = x
u0 = t,

a1 = −
∫ x

0

∫ x

0
u0 dtdx = −1

6
x3

u1 = −1
6

t3,

a2 = −
∫ x

0

∫ x

0
u1 dtdx =

1
120

x5

u2 =
1

120
t5,

a3 = −
∫ x

0

∫ x

0
u2 dtdx

u3 = − 1
5040

t7,

a4 = −
∫ x

0

∫ x

0
u3 dtdx =

1
362880

x9

u4 =
1

362880
t9.

then
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un = u0 + u1 + u2 + u3 + u4.

Hence

un (t) = t− 1
6

t3 +
1

120
t5 − 1

5040
t7 +

1
3628800

t9, and

un (x) = x− 1
6

x3 +
1

120
x5 − 1

5040
x7 +

1
3628800

x9.

Comparison of results and curve for Example 1 are represented in Table 1 and Figure 1.

Table 1. Comparison of results for Example 1

X Exact NADM
0 0 0

0.1 0.099833416646828 0.099833416646828
0.2 0.198669330795061 0.198669330795061
0.3 0.295520206661340 0.295520206661340
0.4 0.389418342308651 0.389418342308651
0.5 0.479425538604203 0.479425538604203
0.6 0.564642473395035 0.564642473395035
0.7 0.644217687237691 0.644217687237691
0.8 0.717356090899523 0.717356090899523
0.9 0.783326909627483 0.783326909627483
1.0 0.841470984807897 0.841470984807897

Figure 1. Comparison curve for Example 1

Example 2. Consider the second order linear Volterra Integro-differential Equation:

u′′ (x) = 1 +
∫ x

0
(x− t) u (t) dt (12)
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with initial condition u (0) = 1, u′ (0) = 0.

Solution. The exact solution is u (x) = cosh x.

By using Modified Adomian Decomposition Method (MADM) give:

∫ x

0

∫ x

0
u′′ dxdx = u (x)− 1,∫ x

0

∫ x

0
1 dxdx =

1
2

x2,

then

u (x)− 1 =
1
2

x2 +
∫ x

0

∫ x

0

∫ 1

0
(x− t) u (t) dtdxdx,

u (x) = 1 +
1
2

x2 +
∫ x

0

∫ x

0

∫ 1

0
(x− t) u (t) dtdxdx.

Let
r = 1 +

1
2

x2.

Expand taylor (r, x,10):

1 +
1
2

x2a0 = 1

u0 = 1

h0 =
1
2

x2

a1 = h0 +
∫ x

0

∫ x

0

∫ x

0
(x− t) u0 dtdxdx =

1
2

x2 +
1
24

x4

u1 =
1
2

t2 +
1

24
t4

a2 =
∫ x

0

∫ x

0

∫ x

0
(x− t) u1 dtdxdx =

1
40320

x8 +
1

720
x6

u2 =
1

40320
t8 +

1
720

t6

a3 =
∫ x

0

∫ x

0

∫ x

0
(x− t) u2 dtdxdx =

1
479001600

x12 +
1

3628800
x10

u3 =
1

479001600
t12 +

1
3628800

t10.

then

un = u0 + u1 + u2 + u3.
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Hence

un (t) = 1 +
1
2

t2 +
1
24

t4 +
1

720
t6 +

1
40320

t8 +
1

3628800
t10 +

1
479001600

t12,

un (x) = 1 +
1
2

x2 +
1
24

x4 +
1

720
x6 +

1
40320

x8 +
1

3628800
x10 +

1
479001600

x12.

Comparison of results and curve for Example 1 are represented in Table 2 and Figure 2.

Table 2. Comparison of results for Example 2

X Exact NADM
0 1.000000000000000 1.000000000000000

0.1 1.005004168055804 1.005004168055804
0.2 1.020066755619076 1.020066755619076
0.3 1.045338514128861 1.045338514128861
0.4 1.081072371838455 1.081072371838455
0.5 1.127625965206381 1.127625965206381
0.6 1.185465218242268 1.185465218242268
0.7 1.255169005630943 1.255169005630943
0.8 1.337434946304845 1.337434946304845
0.9 1.433086385448775 1.433086385448775
1.0 1.543080634815244 1.543080634815244

Figure 2. Comparison curve for Example 2

Example 3. Consider the third order linear Volterra Integro-differential Equation:

u′′′ (x) = 1− 1
2

x2 +
∫ x

0
u (t) dt (13)

with initial condition u (0) = 1, u (1) = e + 1, u′ (0) = 2, u′ (1) = e + 1.

Solution. The analytical solution is u (x) = ex + x. By using Modified Adomian
Decomposition Method (MADM):
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∫ x

0

∫ x

0

∫ x

0
u′′′ (x) dxdxdx = u (x)− 1

2
x2 − 2x− 1,∫ x

0

∫ x

0

∫ x

0
1 dxdxdx =

1
6

x3,∫ x

0

∫ x

0

∫ x

0

1
2

x2 dxdxdx =
1

120
x5.

then

u (x) = 1 + 2x +
1
2

x2 +
1
6

x3 − 1
120

x5 +
∫ x

0

∫ x

0

∫ x

0

∫ x

0
u (t) dtdxdxdx.

Let
r = 1 + 2x +

1
2

x2 +
1
6

x3 − 1
120

x5.

Expand taylor (r, x,10):

1 + 2x +
1
2

x2 +
1
6

x3 − 1
120

x5

a0 = 1
u0 = 1

h0 = 2x +
1
2

x2

a1 = h0 +
∫ x

0

∫ x

0

∫ x

0

∫ x

0
u0 dtdxdxdx = 2x +

1
2

x2 +
1

24
x4

u1 = 2t +
1
2

t2 +
1
24

t4

h1 =
1
6

x3 − 1
120

x5

a2 = h1 +
∫ x

0

∫ x

0

∫ x

0

∫ x

0
u1 dtdxdxdx =

1
6

x3 +
1

120
x5 +

1
720

x6 +
1

40320
x8

u2 =
1
6

t3 +
1

120
t5 +

1
720

t6 +
1

40320
t8

a3 = h2 +
∫ x

0

∫ x

0

∫ x

0

∫ x

0
u2 dtdxdxdx

a3 =
1

5040
x7 +

1
362880

x9 +
1

3628800
x10 +

1
479001600

x12

u3 =
1

5040
t7 +

1
362880

t9 +
1

3628800
t10 +

1
479001600

t12

then

un = u0 + u1 + u2 + u3.
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Hence

un (t) = 1 + 2t +
1
2

t2 +
1
6

t3 +
1

24
t4 +

1
120

t5 +
1

720
t6 +

1
5040

t7 +
1

40320
t8+

1
362880

t9 +
1

3628800
t10,

un (x) = 1 + 2x +
1
2

x2 +
1
6

x3 +
1

24
x4 +

1
120

x5 +
1

720
x6 +

1
5040

x7 +
1

40320
x8+

1
362880

x9 +
1

3628800
x10.

Comparison of results and curve for Example 1 are represented in Table 3 and Figure 3.

Table 3. Comparison of results for Example 3

X Exact NADM
0 1.000000000000000 1.000000000000000

0.1 1.205170918075648 1.205170918075648
0.2 1.421402758160170 1.421402758160170
0.3 1.649858807576003 1.649858807576003
0.4 1.891824697641270 1.891824697641270
0.5 2.148721270700128 2.148721270700128
0.6 2.422118800390509 2.422118800390509
0.7 2.713752707470476 2.713752707470476
0.8 3.025540928492468 3.025540928492468
0.9 3.359603111156950 3.359603111156950
1.0 3.718281828459046 3.718281828459046

Figure 3. Comparison curve for Example 3
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3.2. Discussion

This research work has introduced a new approach to the modification of Adomian
Decomposition Method. This new method applies effectively to the solution of Volterra
Integro-differential equations. The proposed method converges faster. Also, selection of
the Taylor series expansion of the source term needs to be of high order to make the
selection of the Taylor series expansion of the source term. The accuracy is also improve
through an increase in the selection of terms of the Taylor series expansion. The result
obtained compared well with the exact and in most cases they converge directly to the
exact in low number of iterations. It is therefore worthy to state that the method is
elegant and sufficiently applicable to the solution of Volterra integro-differential
equations.

4. Conclusion

This study developed a new method for modifying the Adomian Decomposition
Technique. The Volterra Integro-Differential Equation is easily solved using this novel
approach. The Taylor series extension of the source word must be chosen with care to
broaden the selection as much as feasible.To boost the convergence tendency, we
broaden the Taylor series of the source term with additional options. The proposed
method converges more quickly to exact than existing methods.
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