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SEIQR Model Sensitivity and Bifurcation Analysis of SARS-CoV-2
Dynamics with International in-out Mobility Control in
Indonesia

Lasker P. Sinaga1,∗, Dinda Kartika1, and Nurul A. Farhana1

1Department of Mathematics, Universitas Negeri Medan, Indonesia

ABSTRACT. This study aims to analyze the SEIQR model for the SARS-CoV-2 dynamic by considering in-out mobility.
The model construction is based on the COVID-19 response strategy implemented by the Indonesian government, then
analyzing the model by determining the equilibrium point and basic reproduction number, analyzing model stability,
parameter sensitivity, and bifurcation. The results show that the model has stable disease-free and disease-endemic
critical points when the parameter inequality conditions based on the Routh-Hurwitz criteria are satisfied. Numerical
simulations show that the system takes a long time to reach equilibrium. Furthermore, the sensitivity analysis of the
basic reproduction number shows that the most sensitive parameters are natural birth and death rate susceptible,
contact rate of susceptible individuals with infected individuals from local and international subjects, and rate of
exposed individuals who have infected. Thus, efforts to handle COVID-19 in Indonesia can be improved by focusing
on controlling international in-out mobility, so that the number of exposed individuals who have been infected can be
reduced. Moreover, the bifurcation analysis shows that the system undergoes forward or backward bifurcation under
disease-free conditions if certain coefficient values are satisfied based on the Castillo-Chavez and Song conditions.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

In March 2020, the World Health Organization (WHO) de-
clared COVID-19 a global health emergency [1]. COVID-19 (Coro-
navirus Disease 2019) is a disease that causes acute respiratory
system disorders due to infection with the coronavirus or SARS-
CoV-2 (Severe Acute Respiratory Syndrome 2). Transmission of
this virus occurs very quickly and spreads globally. Indonesia
recorded 6,723,546 people confirmed positive for COVID-19 in
January 2023 [2]. In dealing with the increasing rate of the spread
of COVID-19 in Indonesia, the government has implemented var-
ious regulations regarding restricting community activities. Im-
plementation of the Community Activities Restrictions Enforce-
ment or CARE (Indonesian: Pemberlakuan Pembatasan Kegiatan
Masyarakat, commonly referred to as the PPKM) is carried out to
reduce direct contact between communities and control interna-
tional travel [3].

Efforts to handle the spread of COVID-19 are also carried
out by researchers from various fields. Health researchers ana-
lyze the nature and dynamics of SARS-CoV-2. Meanwhile, math-
ematics researchers construct models to describe predictions
about the spread of the virus. Mathematical modeling can help
to understand and characterize epidemic outbreaks, predict the
spread of viruses, and offer various intervention measures. Anal-
ysis of a mathematical model of COVID-19 dynamics by Ndairou
et al. [4] formulated a model to explain the spread of COVID-19
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in Wuhan and some key aspects related to the pandemic.
Mathematical model analysis of disease spread is per-

formed by observing the stability system at its equilibrium point.
Next, sensitivity analysis was carried out to determine the effect
of changing parameter values on the model, as in research by
Peter et al. [5] analyzing factors that influence the spread and
treatment of cholera. Apart from that, changes in parameter val-
ues can also lead to bifurcation, changes in the stability value of
the system towards the equilibrium point. Research by Huo et al.
[6] shows that a system can experience bifurcation when certain
conditions are satisfied due to changes in parameter values.

Analysis of the COVID-19 mathematical model was carried
out by Annas et al. [7] Resmawan et al. [8] and Zeb et al. [9]
with research showing that isolating infected individuals can re-
duce the risk of spreading COVID-19. A study by Darti et al. [10]
proposed a COVID-19 epidemic model with quarantine classes.
Analysis of the model and basic reproduction number show that
COVID-19 can be controlled by treating infected individuals or
quarantining them.

Research by Deeb et al. [11] developed the STEIR model
by considering the impact of travel adjusted to data on COVID-
19 cases in Lebanon. Researchers estimate possible transmis-
sion scenarios related to different levels of implementation of
social restrictions and travel inflow. The research results show
that strict mitigation levels will slow the spread of the disease,
whereas easing international flights will trigger an increase in in-
fection outbreak.
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Another study byMadubueze et al. [12], Resmawan & Yahya
[13] and Hussain et al. [14] shows that parameters related to con-
tact between susceptible and infected individuals are the most
sensitive parameters for the spread of COVID-19. Other research
related to bifurcation analysis in disease spread models was also
carried out by Parsamanesh et al. [15] which shows that the sys-
tem experiences bifurcation due to changes in parameter values
and the fulfillment of certain conditions.

This research uses the SEIQR model of the spread of SARS-
CoV-2 based on the paper by Sinaga et al. [16]. This study as-
sumes that deaths that occur in the infected and quarantined
subpopulations are deaths due to COVID-19 infection, so natu-
ral deaths for these two subpopulations are zero. This is consis-
tent with the Indonesian Ministry of Health’s definition of death
due to COVID-19, which defines a death as a confirmed case of
COVID-19 who dies [17]. The researchers plan to analyze the
model’s stability, parameter sensitivity, and bifurcation, as the
high prevalence of COVID-19 infections in Indonesia is consid-
ered to require further attention.

2. Model
This research modifies the SEIQR model of the SARS-CoV-2

dynamics. The first step is determining the SEIQR model mod-
ification scheme, critical points, and type of stability using the
Routh-Hurwitz criteria. The next step is determining the basic re-
production number using the next generation matrix approach.
Sensitivity analysis is performed by determining the sensitivity
expression and sensitivity index of basic reproduction number
(R0), endemic critical points E, I, and Q. Next, we performed bi-
furcation analysis on a model that satisfies the Castillo-Chavez
and Song conditions whenR0 = 1. The final step is to perform a
numerical simulation using data on Covid-19 cases in Indonesia
published by the Indonesian Ministry of Health.

The model construction consists of five subpopulations,
namely, Susceptible (S), Exposed (E), Infected (I), Quarantined (Q),
and Recovered (R). The model in research [16] is used by consid-
ering the control of international in-out mobility. The modifica-
tion scheme for the SEIQR model of the SARS-CoV-2 dynamics is
shown in Figure 1.

Based on the scheme in Figure 1, a system of differential
equations is formulated in eq. (1).

dS

dt
= Λ1 + δ3Λ2 − Λ3 − (α1 + α2)SI − d1S

dE

dt
= (α1 + α2)SI − (β1 + β2 + β3 + d2)E

dI

dt
= δ2Λ2 + β2E − (σ1 + σ2 + d3) I

dQ

dt
= δ1Λ2 + β1E + σ1I − (θ + d4)Q

dR

dt
= β3E + σ2I + θQ− d5R

(1)

The definitions of the variables and parameters model in
eq. (1) are explained in Table 1 and Table 2.

3. Results and Discussion
The parameters in the model are determined based on the

distribution situation in Indonesia and estimated based on data

Table 1. Variable definition

Variable Description
S The number of healthy individuals who are susceptible

to infection
E The number of individuals who have tested positive for

the virus during the incubation period but were unable
to infect others

I The number of individuals who have tested positive for
the virus and may infect others

Q The number of exposed and infected individuals who
have been quarantined

R The number of individuals who have recovered and
developed immunity to the virus

on COVID-19 cases in Indonesia (March 2020-August 2022) pub-
lished by the Ministry of Health of the Republic of Indonesia [2].

3.1. Critical Points of SEIQR Model for the SARS-CoV-2 Dynamics
The critical pointE(S, E, I, Q, R) of system can be found

if it satisfies dS
dt = dE

dt = dI
dt = dQ

dt = dR
dt = 0 [18]. By solving

the eq. (1) two equilibrium points are obtained as follows:
1. The disease-free critical point (E0):

E0 = (S∗
0 , E

∗
0 , I

∗
0 , Q

∗
0, R

∗
0)

=

(
Λ1 + δ3Λ2 − Λ3

d1
, 0, 0,

δ1Λ2

θ + d4
,

θδ1Λ2

d5 (θ + d4)

)
(2)

where Λ1 + δ3Λ2 − Λ3 ≥ 0.
2. The disease-endemic critical point (E1):

E1 = (S∗
1 , E

∗
1 , I

∗
1 , Q

∗
1, R

∗
1) (3)

with

S∗
1 =

(Λ1 + δ3Λ2 − Λ3) (σ1 + σ2 + d3)

(α1 + α2) (δ2Λ2 + β2E∗
1 ) + d1 (σ1 + σ2 + d3)

I∗1 =
δ2Λ2 + β2E

∗
1

σ1 + σ2 + d3

Q∗
1 =

δ1Λ2 (σ1 + σ2 + d3) + σ1δ2Λ2

(θ + d4) (σ1 + σ2 + d3)
+

β1 (σ1 + σ2 + d3) + σ1β2
(θ + d4) (σ1 + σ2 + d3)

E∗
1

R∗
1 =

σ2δ2Λ2 (θ + d4) + θδ1Λ2 (σ1 + σ2 + d3) + θσ1δ2Λ2

d5 (θ + d4) (σ1 + σ2 + d3)
+

(β3 (θ + d4) + θβ1) (σ1 + σ2 + d3) + β2 (σ2 (θ + d4) θσ1)

d5 (θ + d4) (σ1 + σ2 + d3)
E∗

1

E∗
1 =

−B ±
√
D

2A

where D = B2 − 4AC > 0, −B ±
√
D ≥ 0, and

A = β2 (α1 + α2) (β1 + β2 + β3 + d2)

B = (δ2Λ2 (α1 + α2) + d1 (σ1 + σ2 + d3)) (β1 + β2 + β3 + d1)

− β2 (α1 + α2) (Λ1 + δ3Λ2 − Λ3)

C = − δ2Λ2 (α1 + α2) (Λ1 + δ3Λ2 − Λ3)
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Figure 1. SEIQR model modification scheme

Table 2. Parameter definition

Parameter Description Value
d1, d2, d5 Natural death rate of susceptible, exposed, and recovered 0.00025 Estimated
d3, d4 Death rate due to SARS-CoV-2 infection for subpopulation infected and quarantined 0.00025 Estimated
Λ1 Susceptible addition parameter 0.85836 Estimated
Λ2 Susceptible addition parameter through in international mobility 0.01575 Estimated
Λ3 Susceptible reduction parameter through out international mobility 0.01575 Estimated
α1 Rate of contacts susceptible to infection from local subjects 0.01677 Estimated
α2 Rate of contacts susceptible to infection from international subjects Estimated
β1 Rate of exposed individuals who have quarantined 0.01210 Estimated
β2 Rate of exposed individuals who have infected 0.05117 Estimated
β3 Rate of exposed individuals who have recovered 0.01650 Estimated
σ1 Rate of infected individuals who have quarantined 0.01210 Estimated
σ2 Rate of infected individuals who have recovered 0.01650 Estimated
θ Rate of quarantined individuals who have recovered 0.01650 Estimated
δ1 Proportion of the number of infected individuals from in international mobility and quarantined 0.25 Assumed
δ2 Proportion of the number of infected individuals from in international mobility who are not quarantined 0.25 Assumed
δ3 Proportion of increase in population suspect by mobility in international 0.5 Assumed

3.2. Local Stability Analysis of Critical Points

Based on model (1), the Jacobian matrix at the disease-free
conditions J (E0) is represented by eq. (4):

J (E0) =


J11 0 J13 0 0
0 J21 J22 0 0
0 J32 J33 0 0
0 J42 J43 J44 0
0 J52 J53 J54 J55

 (4)

where

J11 = − d1

J13 = − (α1 + α2) (Λ1+δ2Λ2−Λ3)

d1
J21 = − (β1 + β2 + β3 + d2)

J22 =
(α1 + α2) (Λ1+δ2Λ2−Λ3)

d1
J32 = β2 J33 = − (σ1 + σ2 + d3)

J42 = β1 J43 = σ1 J44 = − (θ + d4)

J52 = β3 J53 = σ2 J54 = θ J55 = −d5
By solving |λI − J (E0)| = 0, the characteristic equation

for disease-free conditions is obtained:

(λ+ d1) (λ+ d5) (λ+ θ + d4) r (λ) = 0 (5)

with r (λ) = a2λ
2 + a1λ+ a0, where

a2 = 1,

a1 = β1 + β2 + β3 + σ1 + σ2 + d2 + d3,

a0 = (β1 + β2 + β3 + d2) (σ1 + σ2 + d3)−
β2
d1

(α1 + α2) (Λ1 + δ3Λ2 − Λ3)

Using the Routh-Hurwitz criteria [18], the disease-
free critical point is locally asymptotically stable if it
was satisfied d1 (β1 + β2 + β3 + d2) (σ1 + σ2 + d3) >
β2 (α1 + α2) (Λ1 + δ3Λ2 − Λ3) .

The Jacobian matrix at the disease-endemic conditions
J (E1) is represented by eq. (6).

JJoM | Jambura J. Math Volume 6 | Issue 1 | February 2024
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J (E1) =


J11 0 J13 0 0
J21 J22 J23 0 0
0 J32 J33 0 0
0 J42 J43 J44 0
0 J52 J53 J54 J55

 (6)

where

J11 = − (α1 + α2) (δ2Λ2 + β2E
∗
1 )

σ1 + σ2 + d3
− d1

J13 = − (α1 + α2) (Λ1 + δ3Λ2 − Λ3) (σ1 + σ2 + d3)

(α1 + α2) (δ2Λ2 + β2E∗
1 ) + d1 (σ1 + σ2 + d3)

J21 =
(α1 + α2) (δ2Λ2 + β2E

∗
1 )

σ1 + σ2 + d3
J22 = − β1 − β2 − β3 − d2

J23 =
(α1 + α2) (Λ1 + δ3Λ2 − Λ3) (σ1 + σ2 + d3)

(α1 + α2) (δ2Λ2 + β2E∗
1 ) + d1 (σ1 + σ2 + d3)

J32 = β2 J33 = − (σ1 + σ2 + d3)

J42 = β1 J43 = σ1 J44 = − (θ + d4)

J52 = β3 J53 = σ2 J54 = θ J55 = −d5.

By solving |λI − J (E1)| = 0, the characteristic equation
for disease-endemic conditions is obtained:

(λ+ d5) (λ+ θ + d4) s (λ) = 0 (7)

with s (λ) = b3λ
3 + b2λ

2 + b1λ+ b0, where

b3 = 1,

b2 = β1 + β2 + β3 + σ1 + σ2 + d1 + d2 + d3

+
(α1 + α2) (δ2Λ2 + β2E

∗
1 )

σ1 + σ2 + d3
,

b1 = (β1 + β2 + β3 + d2) (σ1 + σ2 + d3)

+
(α1 + α2) (δ2Λ2 + β2E

∗
1 )

σ1 + σ2 + d3
+ d1

− β2 (α1 + α2) (Λ1 + δ3Λ2 − Λ3) (σ1 + σ2 + d3)

(α1 + α2) (δ2Λ2 + β2E∗
1 ) + d1 (σ1 + σ2 + d3)

,

b0 = (α1 + α2) (δ2Λ2 + β2E
∗) (β1 + β2 + β3 + d2)

+ d1 (β1 + β2 + β3 + d2) (σ1 + σ2 + d3)

− d1β2 (α1 + α2) (Λ1 + δ3Λ2 − Λ3) (σ1 + σ2 + d3)

(α1 + α2) (δ2Λ2 + β2E∗
1 ) + d1 (σ1 + σ2 + d3)

.

Using the Routh-Hurwitz criteria [19], the disease-endemic
critical point is locally stable if it was satisfied b1 > 0, b2 > 0,
and b1b2 > b3b0.

The initial value of stability simulation of model is taken
from the first data, S (0) = 6777, E (0) = 0, I (0) = 1528,
Q (0) = 1311, R (0) = 81, and parameter values in Table 2. The
number of individuals uses a scale of 1:1000, as shown by Figure
2.

The graph in Figure 2 shows that the number of individu-
als in subpopulation S will increase until the middle of the 11th

month, then will continue to decrease due to the infection pro-
cess. The number of individuals in subpopulation E also increased

until the end of the 35th month and then decreased due to move-
ments in subpopulation I. The number of individuals in subpop-
ulation I will continue to increase and then decrease over a long
period. The transmission rate continues to increase because of
the insignificant intervention efforts, so the transmission process
in March 2020-August 2022 is very high. The decrease in infec-
tion cases could occur due to an increase in Q and R subpopula-
tions due to the quarantine and treatment efforts carried out.

3.3. Basic Reproduction Number

The basic reproduction number (R0) is the estimated num-
ber of infections per unit of time determined using the next-
generation matrix approach. The determination of R0 is based
on infective subpopulations E, I, and Q [20].

Let φi and ψi represent the rate of increase in infection and
disease transfer, death, and recovery from the i-th compartment
respectively. Based on the infective subpopulations E, I, and Q,
the vectors φ and ψ are obtained as follows:

φ =

 (α1 + α2)SI
0
0

 ,

ψ =

 (β1 + β2 + β3 + d2)E
(σ1 + σ2 + d3) I − (δ2Λ2 + β2E)
(θ + d4)Q− (δ1Λ2 + β2E + σ1I)

 .

(8)

Next, the linearization of vectors φ and ψ produces vectors F
and V :

F =

 0 (α1 + α2)S 0
0 0 0
0 0 0

 ,

V =

 β1 + β2 + β3 + d2 0 0
−β2 σ1 + σ2 + d3 0
−β2 −σ1 θ + d4

 .

(9)

By solving K = FV −1 and substituting the disease-free critical
point (E0), the next-generation matrix is obtained as follows:

K =

 k11 k12 0
0 0 0
0 0 0

 (10)

where

k11 = − β2 (α1 + α2) (Λ1 + δ3Λ2 − Λ3)

d1

k12 =
(α1 + α2) (σ1 + σ2 + d3) (Λ1 + δ3Λ2 − Λ3)

d1

The R0 value is the largest eigenvalue of the matrix K
[19]. The eigenvalue of K is acquired by satisfying the equation
|λI −K| = 0. Thus, R0 is obtained as follows:

R0 =
β2 (α1 + α2) (Λ1 + δ3Λ2 − Λ3)

d1
. (11)
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Figure 2. Stability of SEIQR model for the spread of SARS-CoV-2

3.4. Sensitivity Analysis

The sensitivity expressionR0 obtained by satisfying the fol-
lowing equation [21]:

CR0
p =

∂R0

∂p
× p

R0
(12)

where p is the parameter tested for its sensitivity to R0. Next,
the sensitivity indexR0 calculated by substituting the parameter
values into the sensitivity expression CR0

p . The sensitivity index
shown in Table 3.

Table 3. Sensitivity indices of the parameters of the basic re-
production number

Parameter Baseline Value Sensitivity Indices
d1 0.00025 -1
d2 0.00025 0
d3 0.00025 0
d4 0.00025 0
d5 0.00025 0
Λ1 0.85836 1.009259423
Λ2 0.01575 0.009259423
Λ3 0.01575 -0.0018518845

α1 + α2 0.01677 1
β1 0.01210 0
β2 0.05117 1
β3 0.01650 0
σ1 0.01210 0
σ2 0.01650 0
θ 0.01650 0
δ1 0.25 0
δ2 0.25 0
δ3 0.5 0.009259423

Based on Table 3, it is obtained that d1, Λ1, α1 + α2, and
β2 are the most sensitive parameters to changes in the R0 value.

We intended to simulate different values of the selected
parameters that reduce the basic reproduction number by 0%, 5%,
15% and 20%. The next section shows the effect of various values
of the most sensitive parameter on the number of exposed cases
at the peak.

Graph (a) in Figure 3 shows the relationship between pa-
rameter d1 and the exposed cases. Parameter d1 has a nega-
tive relationship with the number of exposed cases but did not
significantly change the number of exposed cases. The value
d1 = 0.0003125 (which can reduce R0 by 20%) has the most in-
fluence in reducing the number of exposed cases.

Graph (b) in Figure 3 shows the relationship between pa-
rameter Λ1 and the exposed cases. Parameter Λ1 has a positive
relationship with the exposed cases as shown in the graph. The
valueΛ1 = 0.6882330 (which can reduceR0 by 20%) has themost
influence in reducing the number of exposed cases.

Graph (c) in Figure 3 shows the relationship between pa-
rameters α1 + α2 and the exposed cases. From the start of the
simulation until the 34th month, the value α1+α2 = 0.0134160
(which can reduce R0 by 20%) has the most influence in reducing
the number of exposed cases. However, at the end of the simu-
lation, the value α1 + α2 = 0.01677 (which does not reduce R0)
shows the best effect in reducing the number of exposed cases.

Graph (d) in Figure 3 shows the relationship between pa-
rameter β2 and the exposed cases. The value of β2 = 0.05177
(which does not reduceR0) increase the number of exposed cases
significantly. Meanwhile, the value of β2 which can reduce R0 by
5%, 15%, and 20% decreases the number of exposed cases signifi-
cantly.

3.5. Bifurcation Analysis

The bifurcation analysis is used to see changes in the stabil-
ity orbit towards a critical point which is influenced by changes
in certain parameter values. The bifurcation of the SEIQR model
is using the well-known Castillo-Song bifurcation theorem at
R0 = 1 [22]. Let eq. (1) be formulated as follows, where
x1, x2, x3, x4, x5 respectively being S, E, I, Q, R:

g1 =
dS

dt
= Λ1 + δ3Λ2 − Λ3 − (α1 + α2)SI − d1x1

g2 =
dE

dt
= (α1 + α2)x1x3 − (β1 + β2 + β3 + d2)x2

g3 =
dI

dt
= δ2Λ2 + β2x2 − (σ1 + σ2 + d3)x3

(13)
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Figure 3. The number of exposed cases for various values of the most sensitive parameter

g4 =
dQ

dt
= δ1Λ2 + β1x2 + σ1x3 − (θ + d4)x4

g5 =
dR

dt
= β3x2 + σ2x3 + θx4 − d5x5

The parameter (α1 + α2) is chosen as the bifurcation pa-
rameter when R0 = 1, so it is obtained:

(α1 + α2) = (α1 + α2)
∗
=

d1
β2 (Λ1 + δ3Λ2 − Λ3)

. (14)

Next, using the Center-Manifold theorem, the existence of
zero eigenvalues when R0 = 1 and E0 is analyzed [23]. The
linearization of eq. (13) is obtained as follows:

J (E0, (α1 + α2)) =


J11 0 J13 0 0
0 J22 J23 0 0
0 J32 J33 0 0
0 J42 J43 J44 0
0 J52 J53 J54 J55

 (15)

where

J11 = − d1

J13 = − (α1 + α2) (Λ1 + δ3Λ2 − Λ3)

d1
J22 = − (β1 + β2 + β3 + d2)

J23 =
(α1 + α2) (Λ1 + δ3Λ2 − Λ3)

d1
J32 = β2 J33 = − (σ1 + σ2 + d3)

J42 = β1 J43 = σ1 J44 = − (θ + d4)

J52 = β3 J53 = σ2 J54 = θ J55 = −d5.
By solving equation |λI − J (E0, (α1 + α2))| = 0, five eigen val-
ues are obtained:

λ1 = 0,

λ2 = − d1,

λ3 = − d5,

λ4 = − (θ + d4) ,

λ5 = − (β1 + β2 + β3 + σ1 + σ2 + d2 + d3) .

Because there is a zero eigenvalue and the other eigenvalues are
negative, the right and left eigenvectors respected to the zero
eigenvalue will be calculated.

The right eigenvectors w = (w1, w2, w3, w4, w5)
T

of the zero eigenvalue is obtained by satisfying condition
J (E0, (α1 + α2)) • w = 0, so that:

w1 =
β2 (α1 + α2)x1

d1 (β2 + σ1 + σ2 + d3)
w5,

w2 =
β2 (α1 + α2)x1

(β1 + β2 + β3 + d2) (β2 + σ1 + σ2 + d3)
w5,

w3 = − β2
(β2 + σ1 + σ2 + d3)

w5,

w4 = 0,

w5 = w5.
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The left eigenvectors v = (v1, v2, v3, v4, v5) of the zero eigen-
value is obtained by satisfying condition v •J (E0, (α1 + α2)) =
0, such that:

v1 = 0,

v2 =
β3 − β2 ((α1 + α2)x1 − σ2)

(β1 + β2 + β3 + d2) ((α1 + α2)x1 + (σ1 + σ2 + d3))
v5,

v3 = − (α1 + α2)x1 − σ2
(α1 + α2)x1 + (σ1 + σ2 + d3)

v5,

v4 = 0,

v5 = v5.

The values of v5 and w5 are obtained by satisfying the equation
v • w = 1, such that:

v5 = (β1 + β2 + β3 + d2)
2
(β2 + σ1 + σ2 + d3)

((α1 + α2)x1 + (σ1 + σ2 + d3))

w5 =
1

p1 + p2 + p3

where

p1 = β2 (α1 + α2)x1 (β3 − β2 ((α1 + α2)x1 − σ2))

p2 = β2(β1 + β2 + β3 + d2)
2
((α1 + α2)x1 − σ2)

p3 = (β1 + β2 + β3 + d2)
2
(β2 + σ1 + σ2 + d3)

((α1 + α2)x1 + (σ1 + σ2 + d3)) .

Because of the parameter is positive and x1 = S0 =
Λ1+δ3Λ2−Λ3

d1
> 0, then v5 > 0 and

1. w5 < 0 if (α1 + α2)x1 − σ2 < 0 and

β2(β1 + β2 + β3 + d2)
2

((α1 + α2)x1 − σ2) > β2 (α1 + α2)

(β3 − β2 ((α1 + α2)x1 − σ2))x1

+ (β1 + β2 + β3 + d2)
2

(β2 + σ1 + σ2 + d3)

((α1 + α2)x1 + (σ1 + σ2 + d3))

2. w5 > 0 if (α1 + α2)x1 − σ2 > 0 and

β2(β1 + β2 + β3 + d2)
2

((α1 + α2)x1 − σ2) < β2 (α1 + α2)

(β3 − β2 ((α1 + α2)x1 − σ2))x1

+ (β1 + β2 + β3 + d2)
2

(β2 + σ1 + σ2 + d3)

((α1 + α2)x1 + (σ1 + σ2 + d3)) .

Next, calculate the second-order partial derivatives for
g1, g2, g3, g4, g5 with respect to x1, x2, x3, x4, x5, (α1 + α2),
it is found that all second-order partial derivatives have the value
0, except:

∂2g1
∂x1∂x3

=
∂2g1
∂x3∂x1

= − (α1 + α2) ;

∂2g2
∂x1∂x3

=
∂2g2
∂x3∂x1

= α1 + α2;

∂2g1
∂x1∂ (α1 + α2)

= − x3;

∂2g1
∂x3∂ (α1 + α2)

= − x1;

∂2g2
∂x1∂ (α1 + α2)

= x3;

∂2g2
∂x3∂ (α1 + α2)

= x1.

The bifurcation coefficients A and B are obtained by satis-
fying the Castillo-Song bifurcation theorem, so that:

A =

5∑
k,i,j=1

vkwiwj
∂2gk
∂xi∂xj

(
E0, (α1 + α2)

∗)
= − v5w

2
5

2β2
2(α1 + α2)

2
(β3 − β2 ((α1 + α2)x1 − σ2))x1

d1q12q2 ((α1 + α2)x1 + q3)

and

B =

5∑
k,i=1

vkwi
∂2gk

∂xi∂ (α1 + α2)

(
E0, (α1 + α2)

∗)
= − v5w5

β2 (β3 − β2 ((α1 + α2)x1 − σ2))x1
q1q2 ((α1 + α2)x1 + q3)

where

q1 = β2 + σ1 + σ2 + d3

q2 = β1 + β2 + β3 + d2

q3 = σ1 + σ2 + d3.

The parameter value is positive and x1 = S0 = Λ1+δ3Λ2−Λ3

d1
> 0,

then:
1. A < 0 if β3 − β2 ((α1 + α2)x1 − σ2) > 0 and w5 < 0
A > 0 if β3 − β2 ((α1 + α2)x1 − σ2) < 0 and w5 < 0

2. B will always be positive
If β3−β2 ((α1 + α2)x1 − σ2) > 0 andw5 < 0, thenB > 0
If β3−β2 ((α1 + α2)x1 − σ2) < 0 andw5 < 0, thenB > 0
Based on the above discussion, we can see that under the

conditionsR0 = 1 and S0 > 0, the system experiences a forward
bifurcation when A < 0 and B > 0. Under the same conditions,
the system experiences backward bifurcation when A > 0 and
B > 0.

4. Conclusion
The SEIQRmodel for the SARS-CoV-2 dynamics has disease-

free and disease-endemic critical points that are stable when the
inequality condition of parameter values based on the Routh-
Hurwitz criteria was satisfied. Numerical simulations of stabil-
ity analysis show that the system will be stable for a long time.
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Furthermore, sensitivity analysis of the basic reproduction num-
ber shows that natural birth and death rate S (susceptible), the
contact rate of susceptible individuals with infected individuals
from local and international subjects, and the rate of exposed in-
dividuals who infected are the most sensitive parameters. Thus,
based on the results of the sensitivity analysis, efforts to handle
COVID-19 in Indonesia can be improved by focusing on control-
ling international in-out mobility, so that the number of exposed
individuals who have been infected can be reduced. In addition,
bifurcation analysis shows that the system has forward or back-
ward bifurcation by satisfying certain coefficient values based on
the conditions stated by Castillo-Chavez and Song whenR0 = 1.
For further research development, numerical simulations of bifur-
cation analysis in the model can be demonstrated so that further
analysis can be carried out.
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