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On The Hidden Structure of Odd Numbers and Its
Consequences for the Riemann Hypothesis

Junior Mukomene1,∗

1Rsn Labs, Redox Solution Network, Ouaset sarl, Kinshasa, Democratic Republic of the Congo

ABSTRACT. The Riemann hypothesis remains unconfirmed or invalidated to this day, although local verifications
on the calculation of its zeros have never found it faulty. Mertens reformulated the problem to make it much more
accessible and surely more easily solvable. Unfortunately his conjecture, also called a strong conjecture, turned out to
be incorrect. There remain 2 other conjectures, the weak and the general, which do not yet have fixed status. Would
it then be possible that the resolution of the Riemann hypothesis arises through one of these 2 conjectures? We answer
yes and we turn our attention to the Mertens weak conjecture. Equipped with a new equation to date and a methodical
approach which uses a bounded description of numbers, we solve the conjecture by placing ourselves under the criteria
of Hausdorff ’s theorem concerning the evolution of the sum, by showing first of all that odd numbers have a structure
similar to that of triangular numbers, and then the randomness arises from their intrinsic regularity; which does
not contradict the Martin-Löf definition of random sequences despite everything. We therefore resolve the Riemann
hypothesis and we provide an equation which will certainly make it possible to resolve other types of problems, and
thus to extend the means made available to mathematicians to examine various types of questions whether in number
theory or in other fields of mathematics, or even in physics, cryptography and computer science.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJBM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Attacking the Riemann hypothesis [1, 2] head-on is quite
difficult and this difficulty comes from the function ζ(s) itself [3,
4], whose domain is s ∈ C|Re(s) > 1 and analytically extended
to s ∈ C|Re(s) > 0, s ̸= 1 . It is still not very well known and
her zeros continue to raise questions, even within the narrow
scope of the actual plan. Thus, we still do not know if the Apéry’s
constant [5] (the value of ζ(3)) is a transcendent number or not,
nor if it even has a closed form. The entire approach put in place
by Mertens starts from the Möbius function [6]. Let µ be the
Möbius function, a particular multiplicative function, defined on
all strictly positive integers and with range in the set −1, 0, 1
such that:

µ (N) =


1, if N = 1
0, if N is divisible by a perfect square
(−1)

t
, if N has a number t of factors.

This function is also involved in combinatorics and in Dirichlet
series [7].

From the Möbius function, we define the Mertens function
[8], for any given integer N, as follows:

M (N) =
∑

1≤k≤N

µ(k). (1)
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As the Möbius function µ only takes unit values in absolute value
or zero, we always have:

|M (N)| < N. (2)

After the application of Abel’s summation formula [9, 10], we
have:

∞∑
1

µ(N)

Ns
= s

∫ ∞

1

M(u)

u1+s
du =

1

ζ(s)
(3)

∀N ∈ N, ∀s ∈ C, Re(s) > 1 and M(u) =
∑

1≤N≤u µ(N).
Merten’s function theory is very obscure. But we know how

to prove the following estimate by taking into account the largest
known region in the critical band that does not contain zero of
the zeta function [11]:

M (u) = O
(
ue−a(lnu )3/5(lnlnu )−1/5

)
(4)

where a is a constant, u > 0, and based on Re(s) > 1 −
a

(ln u)2/3(ln u)1/3
, and O represents the asymptotic comparison

of 2 functions in Landau notation [12].
There are 3 Mertens conjectures and all involve the Rie-

mann hypothesis:
1. Mertens weak conjecture:

∀ε > 0,M (N) = O
(
N

1
2+ε
)

(5)
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2. Mertens strong conjecture:

|M (N)| <
√
N. (6)

Jànos Pintz showed shortly that there exists at least one in-
teger less than exp (3.21 1064) refuting the conjecture [13].

3. Mertens generalized conjecture:

|M (N)| < A
√
N (7)

where A ∈ R is a positive constant. It is still unknown
whether M(N)/

√
N is bounded, but te Riele and Odlyzko

consider it probable that it is not [14, 15].
Our article attempts to demonstrate Merten’s weak conjec-

ture (6), because it seems a natural and more accessible way to
lead to the Riemann hypothesis from the elements in our pos-
session. This will open the way to a new approach to several
mathematical problems.

Theorem 1 (Hausdorff ’s theorem). [16] With a large quantity
of numbers taken at random, the sum does not grow faster than
CsteN

1
2+ε, ∀ε > 0, when N tends towards infinity, and this

with a probability of 1.

We will show that taking numbers from 1 toN is the same
as drawing N numbers at random.

2. Method
We will base ourselves on a bounded description of num-

bers, adequate in our opinion, to lead directly to the expected re-
sult, namely the demonstration that Hausdorff ’s theorem remains
valid even for an arithmetic sequence. To do this, we will study
the characteristic equation that describes the odd numbers in Z
and arrive at the hidden structure of these numbers. This struc-
ture presents a distribution similar to that of triangular numbers.
We will then show that from the regular distribution of odd num-
bers emerges random behavior, which does not contradict the
definition of Martin-Löf on random sequences [17]. This fact will
allow us to place ourselves within the criterion of Hausdorff ’s
theorem and show that Mertens’ weak conjecture is correct and
merges with Hausdorff ’s theorem. This will lead to the confirma-
tion of Riemann’s hypothesis. This will also give suggestions for
a new way of generating random numbers.

3. Results and Discussion
Let B be a positive square integer. Let N be any number

for which we can write:

N = p× q (8)

with p ≤ q. In particular p = 1, if N is a prime number.
Let T (N) be a number called the witness of N for the fac-

torization, such that we can write:

N + T (N) = B. (9)

B is then a bound for N and N is said to be bounded by B, so
that we have:

N ≤ B. (10)

Proposition 1. Any number N bounded by B can be written as
the product of 2 factors defined by the 3 integers numbers b, a, x
as follows:

(
b− 1

2
− x− a

)(
b− 1

2
− x+ a

)
= N. (11)

Proof. Let us define from B, b, which we will call the base, such
that:

b = 2
√
B − 1.

We can show that B − b is still a square. Indeed,

B − b = B − 2
√
B + 1 ⇒ (B − b) =

(√
B − 1

)2
.

Let x such that:
b− 1

2
− x =

S

2

with S the sum of the factors of N :

S = p+ q.

Let a be half the difference of the factors of the same numberN :

a =
q − p

2
.

Therefore ∀N ≤ B, then we have:(
b− 1

2
− x− a

)(
b− 1

2
− x+ a

)
= N.

Corollary 1. The witness of N , T (N), is then given by the fol-
lowing expression:

T (N) = (b− x) (x+ 1) + a2. (12)

Proof. Indeed, the expansion of the expression (11) in proposi-
tion 1 leads to: (

b− 1

2
− x

)2

− a2 = N(
b− 1

2

)2

− (b− 1)x+ x2 − a2 = N(
2
√
B − 2

2

)2

− (b− 1)x+ x2 − a2 = N

(√
B − 1

)2
− (b− 1)x+ x2 − a2 = N.

It is known that B − b =
(√

B − 1
)2

, so we have:
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B − b− (b− 1)x+ x2 − a2 = N

B − bx− b+ x+ x2 − a2 = N

B − b (x+ 1) + x (x+ 1)− a2 = N

B − (b− x) (x+ 1)− a2 = N

(b− x) (x+ 1) + a2 = B −N.

Therefore B −N = T (N), then we have:

T (N) = (b− x) (x+ 1) + a2.

Corollary 2. For the numbers x and a to always be integers, the
number N must not be even.

Proof. For any even number N such that, for 2 numbers n and
m ∈ Z:

N = 2n× (2m+ 1).

We know how to find a and x such that:

a =
2 (m− n) + 1

2
and

s

2
=

2 (m+ n) + 1

2

are not integers and therefore x neither.
Therefore, equation (12) in Z is the characteristic equation

of odd numbers when described in a bounded way. In the fol-
lowing, we will subsequently reserve the notation “N” for odd
integers.

Corollary 3. As N can only be odd, T (N) must also be odd.

Proof. This goes without saying since every T (N) also obeys
equation (11) at preposition 1 because every witness is also a
number. This implies that B can only be even due to equation
(9).

Corollary 4. The numbers x and a obey the same restriction on
parity as N and T (N).

Proof. This is obvious by considering equation (12) at corollary 1
and knowing that b and T (N) are always odd.

Proposition 2. If we consider b, x and a modulo 8, then there
are 4 kinds of odd numbers.

Proof. The fact that x and a must always have the same parity
(corollary 4) means that they do not contribute simultaneously
to the modular value of (12):
• If x and a are even, then x does not influence T (N), and

therefore the 2 values of T (N) will depend only on those of
a. Indeed, in (b− x) (x+ 1) we have the following 4 cases:

1. Let x ≡ 0 mod8 ⇒ (b− x) (x+ 1) ≡ b mod8
2. Let x ≡ 2 mod8 ⇒ (b− x) (x+ 1) ≡ (3b− 6) mod8
3. Let x ≡ 4 mod8 ⇒ (b− x) (x+ 1) ≡ (5b− 4) mod8
4. Let x ≡ 6 mod8 ⇒ (b− x)(x+ 1) ≡ (7b− 2) mod8

b having 2 possible values 3 mod8 and 7 mod8, when
we replace these 2 values in each of the 4 cases we
always find the same value of b. x therefore has no
influence.

Only the 2 values of a2 (0 and 4 mod8) therefore influence
the expression of T (N).

• If x and a are odd, then it is around a not to influence T (N)
since a2 ≡ 1 mod4. Indeed, in (b− x) (x+ 1) we have the
following 4 cases:
1. Let x ≡ 1 mod8 ⇒ (b− x) (x+ 1) ≡ 2(b− 1) mod8
2. Let x ≡ 3 mod8 ⇒ (b− x) (x+ 1) ≡ 4 (b− 3) mod8
3. Let x ≡ 5 mod8 ⇒ (b− x) (x+ 1) ≡ 6 (b− 5) mod8
4. Let x ≡ 7 mod8 ⇒ (b− x)(x+ 1) ≡ 0 (b− 7) mod8

b having 2 possible values 3 mod8 and 7 mod8, when
we replace these 2 values in each of the 4 cases we find
either 0 mod8 and 4 mod8.

As previously with a and x even, only these 2 values (0 and
4 mod8) therefore influence the expression of T (N).

We, therefore, end up with 4 types of numbers, those that de-
pend on a and those which depend on x. And, following the
influential modular values, we have: Ta0, Ta4, Tx0, and Tx4.

Proposition 3. If we consider the respective influences of x (re-
spectively of a) in the types induced by a (resp. by x), the odd
numbers are distributed in each of these 4 types as are the trian-
gular numbers.

Proof. 3 successive triangular numbers present by successive dif-
ference from the largest to the smallest the following property
which defines their distribution:

tn =
n (n+ 1)

2
, (13)

tn+1 =
(n+ 1) (n+ 2)

2
, (14)

tn+2 =
(n+ 2) (n+ 3)

2
. (15)

By doing (15)− (14), we have:

tn+2 − tn+1 =
n2 + 5n+ 6− n2 − 3n− 2

2

=
2n+ 4

2
= n+ 2.

By doing (14)− (13), we have:

tn+1 − tn =
n2 + 3n+ 2− n2 − n

2
2n+ 2

2
= n+ 1.

Therefore we have that:

tn+2 − tn+1 = (tn+1 − tn) + 1. (16)
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Now that we have established what we mean by the distri-
bution of triangular numbers, let’s apply the same thing to odd
numbers.
1. Influence of x in Ta0(N) and Ta4(N)

We will be interested in the Ta(N) which share the same
values of a. Using the fact that x < b−1

2 by definition (cfr.
(16)) and the fact that x is even, we can then introduce 3
numbers taking the first x = b−1

2 − 2u− 1, ∀u ∈ N:

T1x (N) =

(
b− b− 3

2
+ 2u

)
×(

b− 3

2
− 2u+ 1

)
,

(17)

T2x (N) =

(
b− b− 3

2
+ 2u+ 2

)
×(

b− 3

2
− 2u− 2 + 1

)
,

(18)

T3x (N) =

(
b− b− 3

2
+ 2u+ 4

)
×(

b− 3

2
− 2u− 4 + 1

)
.

(19)

• Let’s first rewrite T2x(N) in order to highlight the el-
ements that resemble those of T1x(N) :

T2x (N) =

(
b− b− 3

2
+ 2u

)(
b− 3

2
− 2u+ 1

)
− 2

(
b− b− 3

2
+ 2u

)
+ 2

(
b− 3

2
− 2u− 1

)
(20)

We recognize in the first term T1x(N), and so:

T2x (N) = T1x (N)− 2

(
b− b− 3

2
+ 2u

)
+ 2

(
b− 3

2
− 2u− 1

)
= T1x (N)− 2

(
b− b− 3

2
+ 2u

)
+ 2

(
b− 3

2
− 2u

)
− 2

= T1x (N) + 2

(
b− 3

2
− 2u

)
− 2b+ 2

(
b− 3

2
− 2u

)
− 2

= T1x (N) + b− 3− 4u− 2b+ b

− 3− 4u− 2

= T1x (N)− 8− 8u.

(21)

so that:

T1x (N)− T2x (N)

8
= u+ 1. (22)

• Let’s arrange equation (19) in the same way as a func-
tion of T1x(N):

T3x (N) =

(
b− b− 3

2
+ 2u

)(
b− 3

2
− 2u+ 1

)
− 4

(
b− b− 3

2
+ 2u

)
+ 4

(
b− 3

2
− 2u− 3

)
= T1x (N)− 4

(
b− b− 3

2
+ 2u

)
+ 4

(
b− 3

2
− 2u− 3

)
= T1x (N)− 4

(
b− b− 3

2
+ 2u

)
+ 4

(
b− 3

2
− 2u

)
− 12

= T1x (N) + 4

(
b− 3

2
− 2u

)
− 4b

+ 4

(
b− 3

2
− 2u

)
− 12

= T1x (N) + 2b− 6− 8u− 4b+ 2b

− 6− 8u− 12

= T1x (N)− 24− 16u.

(23)

so that:

T2x (N)− T3x (N) = T1x (N)− 8− 8u− T1x (N)

+ 24 + 16u

= 8u+ 16

(24)

or
T2x (N)− T3x (N)

8
= u+ 2. (25)

Furthermore, it will be obtained that:

eq.(25) = eq.(22) + 1. (26)

2. Influence of a in Tx0 (N) and Tx4(N)
We will be interested in the Tx(N) which share the same
values of x. We therefore introduce 3 numbers as previously,
taking the first a = 2u+ 1, ∀u ∈ N:

T1a (N) = (2u+ 1)
2
, (27)

T2a (N) = (2u+ 1 + 2)
2
, (28)

T3a (N) = (2u+ 1 + 4)
2
. (29)

By doing (28)− (27), we have:

T2a (N)− T1a (N) = 4u2 + 12u+ 9− 4u2 − 4u− 1

T2a (N)− T1a (N)

8
= u+ 1.

(30)
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By doing (29)− (28), we have:

T3a (N)− T2a (N) = 4u2 + 20u+ 25− 4u2 − 12u− 9

T3a (N)− T2a (N)

8
= u+ 2.

(31)

We also know that:

eq.(31) = eq.(30) + 1. (32)

Using the multiplicative number of 8, the variation is the
same in the 2 cases (eq. (26) et eq. (32)) as in eq. (16). Odd
numbers, therefore, have a structure similar to that of triangu-
lar numbers. This also shows that numbers sharing a common
property (such as having the same sum or the difference of fac-
tors) will be aligned on the same line. This structure is just the
same as the one we want to prove for the zeros of the function
ζ(s).

To do without the factor 8, we thus introduce the parame-
ter kikua k such that, for an element e = {0, 2, 4, 6}, we have:

k =
T (N)− b− e

8
.

This is not the only way to define k. k is quite malleable
and is not fixed; it is therefore not a number in the sense in which
we understand this word. This aspect is likely to be exploited in
cryptography. In general we therefore have:

k =
T (N)− b− e

8
± Cste.

We then name “ben”, denoted b|e, the type to which k be-
longs. The set of 4 b|e is called “ben ben”. Here is a visual exam-
ple for b|0: with B = 256. We have the figure 1:

Figure 1. b|0 represented at the bound B = 256

ConsiderN = 65. b will therefore be worth: b = 2
√
256−

1 = 31. k will therefore be worth: k = 256−65−31
8 = 160

8 = 20.
We see in Figure 1 that we have k = 20 on the diagonal of factor
5. We also have D

4 = 13−5
4 = 2, i.e. the distance between the

last 2 in the column (24 and 27) reduced by 1. We can make the
same observations with any k of b|0.

An interesting aspect of the construction is the appearance
of the following property when k is 0, that is to say when k is
subtracted from all the other ki of b|0, as we can see in figure 2:

65− 1

4
= 2× 7 + 3− 1.

Figure 2. b|0 and k subtracted from other ki

This value of 7 is given by the factors of 65:

7 =
(5− 1)× (13 + 1)

8

i.e.:
65− 1

4
=

(5− 1)× (13 + 1)

4
+

13− 5

4
.

What can still be written in general form:

N − 1

4
=

(p− 1)× (q + 1)

4
+

D

4

and by setting (p−1)×(q+1)
4 = 2x′

0, we have the following more
condensed form:

N − 1

4
= 2x′

0 +
a

2
.

However we find the same value by changing the terms of the
right hand side, by taking the elements of the right column:

65− 1

4
= 2× 6 + 5− 1

or even those of the left column:

65− 1

4
= 2× 8 + 1− 1.
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By introducing an integer r, we have for the right columns:

N − 1

4
= 2x′

0 − 2r +
a

2
+ 2r

and for the left columns:

N − 1

4
= 2x′

0 + 2r +
a

2
− 2r.

Therefore, in all generality, we cannot determine with pre-
cision the exact column of the right-hand side, there exists a
probability attached to the exact position of a number in b|0. This
is the source of the difficulty we encounter when trying to factor
integers. In doing so, we also cannot distinguish the columns on
the left from those on the right. The position of the numbers is
completely random. This is starting to sound like quantum me-
chanics. This conclusion applies to all numbers of b|0 and of b|4.

The relation for b|2 and b|6 is slightly different:

N + 1

4
= 2x0 ± 2r +

S

4
∓ 2r

with 2x0 = (p−1)(q−1)
4 and S the sum of the factors. All the

elements which are attached to a or to S are random and this
leads us to state the following proposition.

Proposition 4. Let 1 to N numbers such that we associate with
each the sum S of its factors, then since the S are random, theN
numbers are also necessarily random.

Proof. This goes without saying, since theN determine theS and
reciprocally the S determine the N , if the seconds are random
then the first are necessarily random too, otherwise we could,
from the N found, have a way of predicting the seconds, which
would enter in conflict with the randomness of seconds. Under-
standing that to calculate M(N) we must be able to factor all
the integers from 1 to N , which is similar, as shown, to finding
their random distribution. Manipulating M(N) cannot do with-
out dealing with randomness.

Taking numbers from 1 to N is therefore the same as N
random numbers. Hausdorff ’s theorem then applies to N num-
bers and therefore Mertens weak conjecture is confirmed. So,
we have:

M(N) = o
(
N

1
2+ε
)
.

Therefore, the Riemann hypothesis is demonstrated.

4. Conclusion
We addressed the problem of the 3 conjectures of Mertens,

which will likely lead us to the demonstration of the Riemann hy-
pothesis. In view of the new elements in our possession, namely
a new way of approaching the factorization of numbers cou-
pled with the hidden structure of odd numbers, we judged that
Merten’s weak conjecture could lead us to this demonstration.
We then established amodel to achieve this demonstration based
on the hidden structure of odd numbers. We discovered that ran-
dom behavior emerged under the regularity of these numbers,
which allows us to place ourselves under the criterion of Haus-
dorff ’s theorem. This, therefore, allowed us to arrive at the result
that:

M(N) = o
(
N

1
2+ε
)
.

So, based on equation (3), since the integral converges for
Re(s) > 1

2 this implies that 1
ζ is defined for Re(s) > 1

2 and
therefore by symmetry for Re(s) < 1

2 . Thus the only non-trivial
zeros of ζ satisfy Re (s) = 1

2 , which is the statement of the Rie-
mann hypothesis. The Riemann hypothesis is over. It is over to
say that Riemann was right. It is also over to say that generations
of mathematicians, each more talented than the other, have not
been able to solve it come from the randomness attached to the
numbers themselves.

This demonstration has implications for the distribution of
prime numbers, in particular on the estimation of the error in the
prime counting function π(n):

π (n) = Li (n) +O
(√

n ln n
)
.

where n is the number for which we calculate the numbers of
prime numbers less than or equal ton,Li is the offset logarithmic
integral function defined by Li (n) =

∫ n

2
dt

logt .
The Riemann hypothesis was the most important unsolved

problem in number theory. It aroused the greatest hopes, given
the innumerable consequences that would result from it if it
proved correct. We, in turn, bring consequences that will change
mathematics in depth. So, following this article, here are sev-
eral applications and uses that we will develop as a direct conse-
quence of this result:
1. In mathematics, there is a new way to solve differential

equations, Hilbert space, ABC conjecture, Navier-Stokes
equations, random matrices, etc.

2. In cryptography, information-theoretically secure, post-
quantum security systems are developed and deployed.

3. In computer science, it is solving the halting problem prob-
abilistically and designing a quantum computer free from
issues related to decoherence.

4. Development of random number generators.
5. In quantum mechanics, the problem of measurement is

solved based on the analogy between integers and sub-
atomic particles.

6. Establishment of ways to solve the shortest vector problem
(SVP) and thus lead to the resolution of the problem P =
NP ?, etc.
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