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The Comparison A-Optimal and I-Optimal Design in Non-Linear Models
to Increase Purity Levels Silicon Dioxide

Muftih Alwi Aliu1, Utami Dyah Syafitri1,∗, Anwar Fitrianto1, and Irzaman2

1Department of Statistics, IPB University, Bogor, Indonesia
2Departement of Physics, IPB University, Bogor, Indonesia

ABSTRACT. One of the obstacles that arise in optimal design is the non-linear model. The relationship between
temperature factors and the temperature increase rates with the purity of silicon dioxide (SiO2) forms a non-linear
pattern. Determining the optimal design for a non-linear model is relatively more complex than a linear model because
it requires additional information in its information matrix. Therefore, this issue necessitates further research on
optimal design in non-linear models. This study uses the polynomial Taylor approach to approximate the non-linear
equation through a linear equation using the appropriate optimal design methods, namely A-Optimal and I-Optimal
criterion. The point search algorithm used was variable neighborhood search, this algorithm searches for design points
by exploring several different neighborhood structures. These two methods were chosen to compare the characteristics
and performance of the designs produced, aiming to obtain an optimal design to improve (SiO2) purity (non-linear
case) using the same algorithm, VNS. The research results showed that the design pattern produced by the A-Optimal
design formed three temperature groups, namely the minimum temperature of 800◦C - 820◦C, the middle temperature
of 850◦C, 860◦C, and the maximum temperature of 900◦C, with varying temperature increase rates in the design
area. The design pattern produced by the I-Optimal design formed a full quadratic pattern, namely the minimum
temperature of 800◦C and the maximum temperature of 900◦C, with varying temperature increase rates in the
design area. The I-Optimal design demonstrated the best performance (most optimal) in the aspect of prediction
variance compared to the A-Optimal design across all alternative points in this study to improve (SiO2) purity.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJoM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

An experimental design is a method for designing an ex-
periment by arranging the possible factors used in the experi-
ment. Experimental design is conducted to obtain information
or facts that align with the research objectives, considering the
time, cost, effort, and materials used in the experiment [1]. Ex-
perimental designs are widely utilized in various fields such as
industry, agriculture, healthcare, and others. One of the benefits
of experimental design is its application in the design of silicon
dioxide (SiO2).

Silicon dioxide, with the chemical formula SiO2, is one of
the most widely found minerals on earth, and it has a reasonably
large utilization process. SiO2 minerals are generally sold at rela-
tively high prices. The raw materials used to obtain SiO2 are rel-
atively straight forward. SiO2 can be produced from biomass, in-
cluding rice straw, husks, and bagasse [2]. SiO2 with a high level
of purity (>95%) can be utilized in the industrial field, such as
industrial raw materials, solar cells, microcomputer chips, elec-
tronics, semiconductors, and others [3, 4].

Low-purity SiO2 can be improved through a purification
process by adjusting the temperature factor (◦C) and different
rates of temperature increase (◦C/minute), where the combina-

∗Corresponding Author.

Check for updatesResearch Article

Jambura Journal of Mathematics, Volume 6, Issue 2, Pages 187–194, August 2024 https://doi.org/10.37905/jjom.v6i2.26253

ARTICLE HISTORY
Received 24 June 2024
Revised 17 July 2024
Accepted 22 July 2024

Published 1 August 2024

KEYWORDS
Non-linear Model
Optimal Design
Silicon Dioxide

Variable Neighborhood Search

tion of these factors will affect the improvement of silica purity
to varying degrees [5]. Therefore, experimental design can be
applied to this issue. However, in the design of experiments, the
combination of existing factors results in many experiments, so
the cost, energy, and time spent is also quite large. Thus, opti-
mal design is the solution to obtain the optimal combination of
temperature and heating rate factors. Optimal design is an effort
to find combinations of several factors to be tested with the aim
of optimizing the design based on certain criteria according to
statistical principles and considering the information contained
in the design [6].

One of the obstacles that arise in optimal design is the non-
linear model. A non-linear model is a relationship between re-
sponse variables and explanatory variables that are not linear in
parameters. Determining the optimal design in non-linear mod-
els is relatively more difficult than in linear models because it re-
quires additional information in the information matrix. The re-
lationship between temperature and temperature increase rates
with the purity of silicon dioxide has a non-linear pattern, form-
ing an exponential relationship [7]. The increase in purity de-
creases and becomes smaller as the purity value approaches 100
percent. Optimal designs in non-linear models are still rarely re-
searched.

Research by Rivai et al. [7] and Wulandari et al. [8] pro-
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posed the Taylor series method using a k-th order polynomial
to approximate nonlinear equations in optimal design criterion
through linear equations. Thus, the information matrix used will
approximate the information matrix in linear equations. More-
over, optimal design requires criterion in its analysis process. The
criterion for optimal design is based on the variance of parameter
estimates and the prediction variance values.

Previous research Jones et al. [9] compared the optimal de-
sign resulting from the A-Optimal criterion and the D-Optimal cri-
terion, which are criterion based on the variance of parameter es-
timates in the case of screening experiments, where in this study,
the A-Optimal design gave better results than the D-Optimal de-
sign. Another study for optimal design based on the prediction
variance was conducted by Goos et al. [10] using the I-Optimal
criterion and compared with the D-Optimal criterion in multidi-
mensional non-linear cases in mixture experiments. The results
showed that the optimal design performance resulting from the
I-Optimal criterion resulted in a more minor prediction variance
than the D-Optimal criterion.

In addition, optimal design also requires a point search al-
gorithm to obtain optimal design results. Previous research Wu-
landari et al. [8] conducted optimal design research by compar-
ing a point search algorithm using variable neighborhood search
(VNS) with one of the algorithms often used in optimal design,
namely the Detmax algorithm, which is part of the point ex-
change algorithm, where this research provides point search re-
sults using the VNS algorithm more efficiently than the Detmax
algorithm in non-linear cases.

Based on the above explanation, this study utilizes the k-
th order Taylor polynomial model as a non-linear approach in
optimal design. The design criterion used are A-Optimal and I-
Optimal, with a design point search algorithm using VNS and us-
ing the range of temperature factors (◦C) and the temperature
increase rates (◦C/minute) from the research of [7, 8] alternative
nine design points and alternative 12 design points with the aim
of comparing the characteristics and performance of the design
produced by the A-Optimal and I-Optimal criterion in non-linear
models in order to obtain the best design to increase the purity
of silicon dioxide.

2. Methods
2.1. Case study

This study uses factors that can increase the purity of sili-
con dioxide (SiO2), namely combustion temperature (◦C) and the
temperature increase rates (◦C/minute). The data used is sim-
ulation data for design. The design case formed in this study
will use a temperature range of 800◦C - 900◦C with a temper-
ature increase rates factor range of 1.67◦C/minute - 5◦C/minute
from research [8]. Then, two alternative points are tried, namely
one alternative choosing nine design points, and two alternative
choosing 12 design points.

2.2. Non-Linear Models

This study explores how the factors of combustion temper-
ature (◦C) and temperature increase rates (◦C/minute) can affect
the improvement of the purity of silicon dioxide (SiO2). The op-
timal design will use these two factors, and the model used in the
optimal design is non-linear. The higher the combustion temper-

ature of silicon dioxide, the higher the purity of silicon dioxide
produced. However, increasing purity is non-linear, where the
increase in purity decreases and becomes smaller as the purity
value approaches 100 percent [7]. The non-linear model used is
exponential decay, which is a model that is often used in chemi-
cal kinetics research. The non-linear exponential decay model is
as follows [8]:

f (t, r) = [A0] {1− e−θ1t+θ2r}, (1)

where f (t, r) is the silica purity grade, A0 is a constant, θ1, θ2
are parameters, t is the temperature factor, and r is the tempera-
ture increase rates. Estimating parameters in non-linear models
usually cannot be solved analytically, so this study uses the Taylor
approach. A model is approximated using the Taylor approach to
get results closer to the initial solution [11]. Here is the Taylor
Polynomial formula:

f (t, r) =

n∑
i=0

n−i∑
j=0

d(i+j)

∂ti∂rj
(a)

i!j!
(t− a)

i
(r − b)

j
. (2)

(t, r) is a function of the variables t (temperature) and r (tem-
perature increase rates), a and b are constants obtained from the
average value of each factor.

2.3. Design and Analysis Steps
The steps taken to develop the optimal design point for

silicon dioxide (SiO2) purity are as follows:
A. Form a non-linear model with a kth-order Taylor Polynomial
approach and determine the best model selected based on
Mean Square Error (MSE).

B. Develop the Variable Neighborhood Search (VNS) algorithm
to form the optimal design point for each criterion as fol-
lows:
(a) VNS steps on the A-Optimal criterion

1. Create a candidate point set (N) containing all the
possibilities. The process of forming candidate
points is done by changing the value of the tem-
perature factor and temperature increase rates to
a scale of -1 to 1. Then, 11 candidate points are
obtained so that there are 121 combinations of
candidate points to be tested.

2. Create a design point as the starting design by ran-
domly selecting points from the set of candidate
sets to form the initial design. Then, as the op-
timal solution to the initial design. Calculate and
review the value of tr

(
X ′X

)−1
, the optimal so-

lution to the initial design.
3. Exploring neighborhoods using the Variable
Neighborhood Search algorithm with the follow-
ing steps:
• Neighborhood N0

a. Replace one randomly drawn point from the
candidate set to the initial design.

b. Calculating and reviewing the
tr
(
X ′X

)−1
value as the optimal design

solution in this neighborhood.
c. Comparing the optimal plan in the neighbor-
hood N0 with the initial design. Select the
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design in a neighborhood with the minimum
tr
(
X ′X

)−1
value. If the tr

(
X ′X

)−1
value

obtained in neighborhood N0 is greater than
the initial design, then explore the next
neighborhood.

• Neighborhood N1

a. Replace two randomly drawn points from the
candidate set to the initial design.

b. Calculating and reviewing the
tr
(
X ′X

)−1
value as the optimal design

solution in this neighborhood.
c. Comparing the optimal plan in the neighbor-
hood N1 with the neighborhood N1. Select
the design in a neighborhood with the mini-
mum tr

(
X ′X

)−1
value.

4. Steps 2 through 3 are repeated 1000 times to se-
lect the design that is the most optimal solution
as the best design for this criterion.

(b) VNS steps on the I-Optimal criterion
1. Create a candidate point set (N) containing all
the possibilities. The process of forming candi-
date points is done by changing the value of the
temperature factor and the temperature increase
rates to a scale of -1 to 1. Then, 11 candidate
points are obtained so that there are 121 combi-
nations of candidate points to be tested.

2. Create a design point as the starting design by ran-
domly selecting points from the set of candidate
sets to form the initial design. Then, as the op-
timal solution to the initial design. Calculate and
review the value of AV (x), the optimal solution
to the initial design.

3. Exploring neighborhoods using the Variable
Neighborhood Search algorithm with the follow-
ing steps:
• Neighborhood N0

a. Replace one randomly drawn point from the
candidate set to the initial design.

b. Calculating and reviewing the average pre-
diction variance AV (x) value as the optimal
design solution in this neighborhood.

c. Comparing the optimal plan in the neighbor-
hood N0 with the initial design. Select the
design in a neighborhood with the minimum
AV (x) value. If the AV (x) value obtained
in neighborhood N0 is greater than the initial
design, then explore the next neighborhood.

• Neighborhood N1

a. Replace two randomly drawn points from the
candidate set to the initial design.

b. Calculating and reviewing the average of pre-
diction varianceAV (x) value as the optimal
design solution in this neighborhood.

c. Comparing the optimal plan in the neighbor-
hood N1 with the neighborhood N1. Select
the design in a neighborhood with the mini-
mum AV (x) value.

4. Steps 2 through 3 are repeated 1000 times to se-

lect the design that is the most optimal solution
as the best design for this criterion.

C. Examining the characteristics of the design obtained from
each criterion by observing the design patterns at each al-
ternative point.

D. Evaluating the best design from each criterion using A-
efficiency and I-efficiency values.

E. Comparing the performance of A-Optimal and I-Optimal de-
signs using Fraction of Design Space (FDS).

2.3.1. A-Optimal Criterion
The A-Optimal criterion is an optimal design criterion

based on parameter estimation that focuses on minimizing the
variance of parameter estimates by minimizing the sum of the
main diagonal elements of the inverse of the information matrix(
X

′
X

)−1
[9]. This sum of the main diagonal elements is also

referred to as the trace (tr) of the inverse of the information ma-
trix. In other words, the A-Optimal criterion aims to minimize

tr
(
X

′
X

)−1
among all possible designs, whereX is the n × p

model matrix, n is the number of design points, and p is the num-
ber of parameters in the model [12].

2.3.2. I-Optimal Criterion
The I-Optimal criterion is a criterion based on predicted

values constructed to minimize the average prediction variance
AV (x) in the design space [13]. The formula for the average
prediction variance is as follows:

AV (x) = tr

[(
X

′
X

)−1

M
]

(3)

whereX is the n × p model matrix, n is the number of design
points, and p is the number of parameters in the model.M is the
moment matrix, which is calculated using the following formula:

M =

∫
X ∈ [−1, +1]k

f (x) f ′ (x) dx (4)

In the context where the integral is applied to a matrix of single-
term polynomials (monomials), this notation should be inter-
preted as a matrix of single-term polynomial integrals (monomi-
als). The experimental region is defined as [−1, +1]

k
, where k

represents the number of factors [10].

2.3.3. Evaluating Designs
SupposeX1 is the first design andX2 is the second design.

Then, the A-efficiency and I-efficiency formulas are as follows:

A− efisiensi =
tr

(
X ′
2X2

)−1

tr
(
X ′
1X1

)−1 . (5)

Whereas if the A-efficiency value is greater than 1, then the first
design is considered better than the second design in terms of
the A-Optimal criterion [12].

I − efisiensi =
AV (x2)

AV (x1)
. (6)

Whereas if the I-efficiency value is greater than 1, then the first
design is considered better than the second design in terms of
the I-Optimal criterion [14].
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2.3.4. Variable Neighborhood Search Algorithm

The Variable Neighborhood Search (VNS) algorithm is a
metaheuristic method for solving combinatorial optimization
and global optimization problems [15]. VNS enhances lo-
cal search-based algorithms by exploring several neighborhood
structures to achieve optimal criteria. This is done to obtain
optimal solutions within a specific neighborhood structure (lo-
cal optimal) and optimal across different neighborhoods, thus
achieving global optimal solutions [16]. One strategy of the VNS
algorithm involves exploring neighborhoods sequentially, from
the one with the fewest solutions to the one with the most solu-
tions [10]. Larger neighborhoods are only explored when other
neighborhoods fail to produce a better solution than the initial
one.

The initial stage of the VNS algorithm involves creating a
candidate design point set of size N. Then, an initial design (nc)
is created, and several different neighborhoods are explored to
generate an optimal design. The VNS algorithm improves the ini-
tial design by making small changes iteratively. The changes from
the neighborhoods used are as follows: the first neighborhood
is denoted as N0 generated by exchanging one design point with
one point from the candidate point set. The last neighborhood
in this study is N1, generated by replacing two design points with
two points from the candidate point set [8].

2.3.5. Fraction of Design Space Plot

The fraction of Design Space (FDS) plot compares the pre-
diction variance between two designs. The FDS plot is employed
to visualize the minimum and maximum prediction variance. It
shows the cumulative distribution of prediction variance across
the entire design space or experimental region.

f′ (x)
(
X ′X

)−1
f (x) . (7)

FDS plot consists of vertical and horizontal lines. The vertical
line represents the prediction variance values, while the horizon-
tal line indicates the fraction of the experimental region ranging
from 0 to 1. A good design will exhibit the smallest prediction
variability compared to other designs across the experimental re-
gion [17].

3. Results and Discussion

3.1. Taylor Polynomial Approach for Non-linear Model

The Taylor approach is illustrated to determine the order
that will be used in this study, with the selection of the order
based on the model’s Mean Square Error (MSE) value. Based on
the combination of Equation (1) and Equation (2), the illustration
of the Taylor approach for the model of SiO2 purity level is as
follows:
First-order Taylor polynomial

f (t, r) = 1− E + θ1E (t− a)− θ2E (r − b) , (8)

with

E = e−θ1a+θ2b.

Second-order Taylor polynomial

f (t, r) = 1− E + θ1E (t− a)− θ2E (r − b)

+
1

2!
[−θ

2
1E

2(t− a)
2
+ 2θ1θ2E (t− a) (r − b)

− θ22E(r − b)
2
].

(9)

This study conducted a simulation to determine the order to be
used in the Taylor polynomial approach. The following are the
MSE values from the Taylor approach simulation on the SiO2 pu-
rity level model using parameters θ1 = 0.01 and θ2 = 0.005.

Table 1. MSE Values for Taylor Polynomial of Silica Purity
Level

Taylor Polynomial MSE
First Order 2.67e-10
Second order 6.70e-12

Based on the MSE values in table 1, the chosen Taylor poly-
nomial is of order two because it has the smallest MSE value. The
resulting model is then expanded to form a full quadratic model
as follows:

f (t, r) = 0.79413 + 0.00038t− 0.00038r

− 1.81301 · 10−7t2 − 1.81301 · 10−7r2

+ 3.62602 · 10−7tr

(10)

Equation (10) is the model that will be used in this study to pro-
duce the optimal design. Figure 1 and Equation (10) show that
the positive coefficient of the temperature factor indicates that
each temperature increase increases SiO2 purity [18]. Negative
coefficient for the temperature increase rates explains that the
higher the temperature increase rates, the lower the SiO2 purity.

Figure 1. Relationship between temperature and tempera-
ture increase rates on silica purity at tempera-
tures ranging from 800◦C to 900◦C, with tempera-
ture increase rates ranging from 1.67◦C/minute to
5◦C/minute.
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Table 2. A-Optimal and I-Optimal Design Points for Alternative One

No A-Optimal Design I-Optimal Design
Temperature (◦C) Temperature increase rates (◦C/minute) Temperature (◦C) Temperature increase rates (◦C/minute)

1. 800 3.34 800 1.67
2. 800 1.67 800 3.67
3. 800 5.00 810 2.67
4. 850 4.67 830 4.67
5. 850 3.67 840 3.34
6. 850 1.67 860 5.00
7. 900 4.67 860 2.67
8. 900 1.67 890 2.00
9. 900 1.67 900 3.67

A-Opt criterion value = 2.7660 I-Opt criterion value = 0.5446

Table 3. A-Optimal and I-Optimal Design Points for Alternative Two

No A-Optimal Design I-Optimal Design
Temperature (◦C) Temperature increase rates (◦C/minute) Temperature (◦C) Temperature increase rates (◦C/minute)

1. 800 1.67 800 4.33
2. 810 4.67 800 3.00
3. 810 3.67 800 1.67
4. 820 5.00 820 1.67
5. 850 1.67 830 3.00
6. 860 4.00 840 5.00
7. 860 4.00 850 3.67
8. 860 5.00 850 3.67
9. 900 1.67 860 3.67
10. 900 3.34 880 2.00
11. 900 4.33 900 2.34
12. 900 5.00 900 4.67

A-Opt criterion value = 2.0723 I-Opt criterion value = 0.3763

3.2. A-Optimal and I-Optimal Designs for SiO2 Purity Level
The initial step to obtaining the moment matrix for calcu-

lating the I-Optimal design involves utilizing the second-order
Taylor polynomial approach after expanding the model formed
in this design into a full quadratic model. This result forms the
basis of this research to find the moment matrix for the I-Optimal
design that will be used. Using Equation (4) to calculate the mo-
ment matrix for the full quadratic model with two continuous
factors that can take values in the interval [−1, +1], is as follows:

f ′ (x) = f ′ (x1, x2) =
[
1 x1 x2 x1x2 x2

1 x2
2

]
.

So, the moment matrix is

M =

∫
xϵ[−1,+1]2

f (x) f ′ (x) dx

=

∫ +1

−1

∫ +1

−1

f (x1, x2) f
′ (x1, x2) dx1dx2

=


1 0 0 0 1/3 1/3
0 1/3 0 0 0 0
0 0 1/3 0 0 0
0 0 0 1/9 0 0
1/3 0 0 0 1/5 1/9
1/3 0 0 0 1/9 1/5

 .

The best design results from the A-Optimal and I-Optimal designs
in non-linear models using the VNS algorithm with the help of
Phyton Google Colaboratory version 3.10 to increase the purity

level of silicon dioxide in alternative one based on the A-Optimal
criterion formula and Equation (3) are presented in Table 2.

The best design for alternative one (n = 9 points) resulted
in an A-Optimal criterion value of 2.7660 and an I-Optimal crite-
rion value of 0.5446. These criterion values are the optimal val-
ues from the results of the VNS algorithm on each design. Subse-
quently, the design points were expanded to 12 points for alter-
native two to achieve improved results, as presented in Table 3.

The best design for alternative two (n = 12 points) resulted
in an A-Optimal criterion value of 2.0723 and an I-Optimal crite-
rion value of 0.3763. These criterion values are the optimal val-
ues from the results of the VNS algorithm on each design. The
A-Optimal design and I-Optimal design points for each alternative
are then visualized in a scatter plot to observe the pattern of the
resulting design points. The patterns of A-Optimal and I-Optimal
designs in the non-linear models exhibit distinct characteristics,
as shown in Figure 2. The A-Optimal designs for alternative one
and alternative two are divided into three temperature groups:
minimum, middle, and maximum. In Alternative one, Group 1
consists of a minimum temperature of 800◦C, Group 2 comprises
a middle temperature of 850◦C, and Group 3 includes a maxi-
mum temperature of 900◦C. Each temperature group has vary-
ing temperature increase rates in its design area. In Alternative
two, Group 1 ranges from the minimum temperature of 800◦C to
820◦C, Group 2 includes temperatures of 850◦C and 860◦C, and
Group 3 consists of the maximum temperature of 900◦C. Each
temperature group has varying temperature increase rates vari-
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(a) (b)

(c) (d)

Figure 2. Design points for: (a) A-Optimal Alternative one, (b) I-Optimal Alternative one, (c) A-Optimal Alternative two, (d) I-Optimal
Alternative two

ation in its design area. There is a repetition of points in alter-
native two, namely at a temperature of 860◦C and a temperature
increase rate of 4◦C/minute.

The I-Optimal design in alternative one and alternative two
design points form a quadratic pattern in the design area, this
pattern has a relationship with the model used, namely the full
quadratic model. Alternative one and alternative two obtained
the same design point results, namely the lowest temperature for
the resulting design is 800◦C, while the highest is 900◦C with the
highest temperature increase rates of 5◦C/minute and the lowest
temperature increase rates of 1.67◦C/minute. There is a repeti-
tion of points in alternative two, namely a temperature of 850◦C
and a temperature increase rates of 3.67◦C/minute. Based on
alternative one and alternative two in each design provide in-
formation that the larger the design point produced, the more
repetition of points occurs in the design area.

3.3. Comparison of A-Optimal and I-Optimal Designs for SiO2 Purity
Level

The comparison of designs begins with evaluating each de-
sign using A-efficiency and I-efficiency values. The purpose is to
determine whether the A-Optimal and I-Optimal designs are effi-
cient for improving the silicon dioxide purity level at each alter-
native design point used in this study.

In evaluating A-efficiency, an illustration is provided by find-
ing the A-Optimal criterion value for the I-Optimal design and
then comparing it with the A-Optimal design. If the A-efficiency
value is greater than 1, the A-Optimal design is considered more

efficient than the I-Optimal design from terms of the A-Optimal
criterion. In evaluating I-efficiency, an illustration is provided by
finding the I-Optimal criterion value for the A-Optimal design and
then comparing it with the I-Optimal design. If the I-efficiency
value is greater than 1, the I-Optimal design is considered more
efficient than the A-Optimal design in terms of the I-Optimal crite-
rion. The results of A-efficiency and I-efficiency in alternative one
and alternative two, which are calculated based on Equation (5)
and Equation (6), can be seen in Table 4 and Table 5.

Table 4. Evaluation of A-Optimal and I-Optimal Designs in
terms of A-Optimal Criterion

Comparison of Designs A-efficiency
Alternative One A-Optimal vs I-Optimal 1.3247
Alternative Two A-Optimal vs I-Optimal 1.1977

Table 5. Evaluation of A-Optimal and I-Optimal Designs in
terms of I-Optimal Criterion

Comparison of Designs I-efficiency
Alternative One I-Optimal vs A-Optimal 1.0143
Alternative Two I-Optimal vs A-Optimal 1.0571

Table 5 shows that alternative one and alternative two in
the A-Optimal design aremore efficient than the I-Optimal design
in terms of the A-Optimal criterion, as the A-efficiency values ob-
tained are all greater than (>) 1. Table 6 shows that alternative
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one and alternative 2 in the I-Optimal design are more efficient
than the A-Optimal design in terms of the I-Optimal criterion, as
the I-efficiency values obtained are all greater than (>) 1. From
these results, both designs are efficient for improving the purity
level of silicon dioxide (SiO2).

Next, the performance of the designs generated by both
methods is compared across 100% of the experimental region in
the aspect of prediction variance using an FDS plot. The goal is
to observe the variance prediction of the two designs, which is
calculated based on Equation (7). This analysis aims to conclude
which design is the best for improving silicon dioxide purity in
this study.

(a) I-Optimal and A-Optimal for alternative one

(b) I-Optimal and A-Optimal for alternative two

Figure 3. Comparison of FDS plots for designs

Figure 3a shows that for Alternative 1, approximately 78%
of the experimental region indicates that the prediction variance
of the I-Optimal design is lower than that of the A-Optimal de-
sign. This suggests that the performance of the I-Optimal design
is significantly more optimal than the A-Optimal design, except
at the extreme right side of the graph. Figure 3b demonstrates
that for Alternative 2, around 70% of the experimental region indi-
cates that the prediction variance of the I-Optimal design is lower
than that of the A-Optimal design. This implies that the I-Optimal
design provides more optimal results than the A-Optimal design,
except at the extreme right side of the graph. Overall, across 74%
of the experimental region, the I-Optimal design outperforms the
A-Optimal design in all alternatives in this study.

4. Conclusion
The best design points from the non-linear model using the

VNS algorithm on temperature and temperature increase rates

(◦C/minute) for SiO2 purity in the A-Optimal design form three
temperature groups. These groups include minimum temper-
atures ranging from 800◦C to 820◦C, middle temperatures at
850◦C and 860◦C, and maximum temperatures at 900◦C, with
varying temperature increase rates within the design region on
Alternatives one and two. The resulting criterion values are
2.7660 and 2.0723, respectively. The I-Optimal design patterns
form a full quadratic pattern, with a minimum temperature of
800◦C and temperature increase rates of 1.67◦C/minute, and a
maximum temperature of 900◦C with temperature increase rates
of 5◦C/minute. The resulting criterion values on Alternatives
one and two are 0.5446 and 0.3763, respectively. The I-Optimal
design demonstrates superior performance compared to the A-
Optimal design in in the aspect of prediction variance for enhanc-
ing silicon dioxide purity. Future research is expected to employ
more neighborhood exploration in the VNS algorithm to achieve
even more optimal results.
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