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Comparison of Fuzzy Grey Markov Model (1,1) and Fuzzy Grey Markov
Model (2,1) in Forecasting Gold Prices in Indonesia

Arthamevia Najwa Soraya1,∗, Firdaniza1, and Kankan Parmikanti1

1Department of Mathematics, Universitas Padjadjaran, Bandung, Indonesia

ABSTRACT. Currently, gold investment is considered promising despite the ever-changing price of gold. However,
obtaining optimal profits is a challenge for investors. Therefore, a proper forecasting method is needed to forecast
the gold price so investors can know the best transaction time. This study used two forecasting methods: the Fuzzy
Grey Markov Model (1,1) and a new, never-before-used approach, the Fuzzy Grey Markov Model (2,1). The Fuzzy
Grey Markov Model (2,1) approach is interesting because it can be considered for forecast data that shows varying
increases and decreases, such as the gold price data used in this study. Both methods are combined models that utilize
fuzzy logic to handle uncertainty in data; the Grey model forms a forecasting model, and the Markov chain determines
the state transition probability matrix. Next, the error rates of the two methods are compared based on the Mean
Absolute Percentage Error (MAPE) value to obtain the best forecasting method. As a result of this study, the Fuzzy
Grey Markov Model (1,1) was chosen as the best forecasting method with a MAPE value of 0.28%.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJoM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
One activity that illustrates the importance of the economy

in a country is investment [1]. Currently, gold investment is con-
sidered attractive because gold prices tend to experience gradual
increases in the long term [2], especially during a severe financial
crisis when the value of many assets fell sharply, but the price
of gold increased [3]. This condition encourages many individ-
uals to choose gold as an investment vehicle. Also, easy access
to gold shops across various regions facilitates gold investment.
These gold investors want optimal profits by getting a low price
when buying and a high price when selling. However, in reality,
the constantly changing price of gold brings light to investment
activities [4], so forecasting is needed to know when an event
will occur so that appropriate action can be taken to overcome
it [5]. That way, investors can determine the right time to invest
in gold based on future prices [6]. Gold price forecasting can be
calculated using various forecasting methods, such as using dou-
ble exponential smoothing [4], Conditional Heteroscedasticity-
Mixed Data Sampling (GARCH-MIDAS) [7], as well as Autoregres-
sive Integrated Moving Average (ARIMA) and Support Vector Ma-
chine (SVM) [8], and others. However, this method requires as-
sumptions, such as following particular data patterns, which may
only sometimes be suitable for all data types.

The Fuzzy Grey Markov Model (FGMM) is an alternative
method that can be used to forecast gold prices without requiring
assumptions about data patterns. This model is obtained by com-
bining the Grey model, Markov chains, and fuzzy logic. Ju-Long
introduced the Grey model in 1982 [9] as a forecasting model that
has comprehensive coverage and achieves good prediction accu-
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racy in dealing with small data samples and poor information, as
well as handling the uncertainty that arises [10, 11]. The Grey
model (MG(1,1)) with a first-order differential equation and one
research variable is the simplest form of the Grey model for use
in forecasting various fields, such as forecasting demand for elec-
tricity use [12], as well as forecasting the number of tourists [13].
In addition, Grey models (MG(2,1)) with second-order differential
equations are used to handle more complex and dynamic data
[14]. Markov chains are used to predict random data with large
fluctuations and improve the forecasting accuracy of the Grey
model [15, 16]. The combination of Grey models, both GM(1,1)
and GM(2,1), with Markov Chains, is known as the Grey Markov
Model (1,1) (GMM(1,1)) and Grey Markov Model (2,1) (GMM(2,1)).
Then, fuzzy logic, first developed by Zadeh in 1965 [17] from
fuzzy set theory, was used to handle the influence of random fluc-
tuations and the weak anti-interference ability of Markov chains
[18].

In FGMM, forecasting is done by adapting to the informa-
tion in the data so that FGMM can be used in a broader variety
of data. FGMM’s integration of the Grey model, Markov chains,
and fuzzy logic makes this model a forecasting model that can
be considered for gold prices compared to traditional methods
due to its ability to handle volatile and uncertain financial mar-
kets. This aspect is essential in forecasting gold prices, which are
influenced by economic, social, political, and market sentiment.
Therefore, FGMM was chosen with the hope that it can provide
more accurate forecasting results and be more effective so that it
can help gold investors obtain optimal profits from their invest-
ments

Some researchers have used the Fuzzy Grey Markov Model
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based on GM(1,1) or FGMM(1,1) to help predict traffic volumes
[19] and the real-time COVID-19 disease [20]. These studies
show the superiority of using FGMM(1,1) in monotonic data com-
pared to GM(1,1) and GMM(1,1), but when dealing with non-
monotonic data, other approaches can be considered. Based on
these studies, it is possible to carry out forecasting using a new
approach that has never been used before, namely the Fuzzy Grey
Markov Model based on GM(2,1) or FGMM(2,1). GM(2,1) makes
FGMM(2,1) a forecasting method that can be used to handle data
that shows varying increases and decreases so that it can be con-
sidered in describing non-monotonic data. Therefore, in this re-
search, gold price forecasting in Indonesia was carried out using
FGMM(1,1) and a new forecasting method that has never been
used before, namely FGMM(2,1). By introducing FGMM(2,1), this
research fills the gap by offering a method that is better suited for
non-monotonic data, specifically used on gold price forecasting
in Indonesia, with the expectation that FGMM(2,1) can provide
better forecasting values than FGMM(1,1), considering the data
used is non-monotonic. Next, the performance of the two meth-
ods is compared using Mean Absolute Percentage Error (MAPE)
to choose the best forecasting method.

2. Methods

The objects of this study are FGMM(1,1) and FGMM(2,1),
which are extensions of GM(1,1) and GM(2,1) by combining
Markov chains and fuzzy logic into the forecasting process. Fur-
thermore, these two methods will forecast the daily gold price
data weighing one gram in Indonesia from February 1, 2024, to
March 1, 2024. The data obtained from the official website of
PT ANTAM Tbk Precious Metal Processing and Refining Business
Unit (https://logammulia.com).

2.1. Fuzzy Grey Markov Model (1,1)

FGMM(1,1) is a forecasting model that combines the theory
of GM(1,1) with fuzzy logic and Markov chains. FGMM(1,1) con-
cept utilizes relative error values obtained from GM(1,1) forecast-
ing results into interval classes. Next, a fuzzification process uses
Markov chains to form a state transition probability matrix. It
ends with a defuzzification process using the FGMM(1,1) method
to obtain forecasting results. In FGMM(1,1), the forecast initia-
tion uses the GM(1,1), which uses the coefficient of time variable
to update the model to new data, known as Accumulated Gen-
erating Operation (AGO) . Theoretically, GM(1,1) helps describe
data by a monotonic change process [21]. After obtaining the
predicted value’s relative error from GM(1,1), the next step is to
apply the Markov chain and fuzzy logic concept into the calcula-
tion to obtain the forecast value of FGMM(1,1).

To construct the FGMM(1,1), we adhere to the following
steps:
1. The first step is to perform GM(1,1) forecasting by forming
a non-negative sequence of actual gold prices data,X(0), as
follows:

X(0) =
(
x(0) (1) , x(0) (2) , · · · , x(0) (n)

)
, (1)

where x(0) (k) ≥ 0, k = 1, 2, . . . , n and n specifies the
amount of data used.

2. To avoid the vibration in gold prices data, formX(1) as One-

time Accumulated Generating Operation (1-AGO), given by

X(1) =
(
x(1) (1) , x(1) (2) , · · · , x(1) (n)

)
, (2)

where x(1) (k) =
∑k

i=1 x
(0) (i) , k = 1, 2, . . . , n.

3. Let Z(1) be a Mean Generating Operation (MGO) sequence
of the average value of two consecutive X(1) data,

Z(1) =
(
z(1) (2) , z(1) (3) , · · · , z(1) (k)

)
, (3)

where z(1) (k) = x(1)(k)+ x(1)(k−1)
2 and k = 2, 3, . . . , n.

4. The GM(1,1) difference equation is

x(0) (k) + az(1) (k) = b, (4)

where parameters ′a′ is the developing coefficient and ′b′ is
the Grey input value. The values of parameters ′a′ and ′b′

can be calculated by the least square method, resulting in
Equation (5) and Equation (6),

a =
1

n−1S0 · S1 −
∑n

k=2 x
(0) (k) · z(1) (k)∑n

k=2

[
z(1) (k)

]2 − 1
n−1

[∑n
k=2 z

(1) (k)
]2 , (5)

b =
1

n− 1
[S0 + aS1] , (6)

with

S0 =

n∑
k=2

x(0) (k) and S1 =

n∑
k=2

z(1) (k).

5. The whitening differential equation of GM(1,1) is

dx(1) (t)

dt
+ ax(1) (t) = b, (7)

with the general solution of Equation (7) given by

x̂(1) (k + 1) =

(
x(0) (1)− b

a

)
e−ak +

b

a
, k = 1, 2, . . . , n.

(8)
6. The actual data’s forecasting gold prices can be calculated
by applying an Inverse Accumulating Generator Operator
(IAGO) from Equation (2), obtaining

x̂(0) (k + 1) = x̂(1) (k + 1)− x̂(1) (k) , (9)

where x̂(0) (1) = x(0) (1) .
7. The forecast value of GM(1,1) can be calculated by substitut-
ing Equation (8) into (9), obtaining

x̂(0) (k + 1) = (1− ea)

(
x(0) (1)− b

a

)
e−ak. (10)

8. Calculate the relative error between the predicted value
from GM(1,1) and the actual data by,

ε (k) =
x(0) (k)− x̂(0) (k)

x(0) (k)
× 100. (11)

9. Determine the Universe of Discourse of the predicted value’s
relative error obtained from Equation (11), by taking ad-
vantage of the minimum and maximum data values [22] be-
comes

U = [Dmin −D1, Dmax +D2] , (12)

where Dmin is the minimum value data, Dmax is the maxi-
mum, and D1 & D2 are arbitrary constants.
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10. Determine the boundary of each state description by defin-
ing many classes of intervals (K) adjusted for the needs of
observation data and determining the length of intervals (l)
calculated by

l =
[( Dmax +D2)− (Dmin −D1)]

K
. (13)

Then, the interval of each existing class stands by

ui = [Dmin −D1 + (i− 1) l , Dmax +D2 + il] , (14)

where i = 1, 2, . . . ,K. The interval of each class can be
written as u1 = [d0, d1], u2 = [d1, d2],.., ui = [d(i−1), di],
where each interval represents a particular state description.

11. Construct the membership function for each fuzzy state.
The membership function is a curve that maps data input
points into fuzzy membership degree [23]. Utilizing the tri-
angular method, the membership function is defined by

µ1(x) =


1 ; d0 ≤ x ≤ d0+d1

2
d1+d2−2x

d2−d0
; d0+d1

2 ≤ x ≤ d1+d2

2

0 ; otherwise,
(15)

µi(x) =


2x−di−2−di−1

di−di−2
; di−2+di−1

2 ≤ x ≤ di−1+di

2
di+1−di−1−2x

di+1−di−1
; di−1+di

2 ≤ x ≤ di+di+1

2

0 ; otherwise,
(16)

and

µn (x) =


2x−dn−2−dn−1

dn−dn−2
; dn−2+dn−1

2 ≤ x ≤ dn−1+dn

2

1 ; dn−1+dn

2 ≤ x ≤ dn
0 ; otherwise.

(17)
12. To define a fuzzy vector, calculate each fuzzy state’s mem-

bership degree by substituting each state’s relative error
value to the correspondingmember function. The fuzzy vec-
tor result for each data value is defined by Govindan et al.
[19]:

F (ε(k)) = µA1
(ε(k)) , µA2

(ε(k)) , . . . , µAn
(ε(k)) ,

(18)
where µAi

(ε(k)) is the membership function of the relative
error (ε(k)) of the fuzzy set Ai.

13. UseMarkov chains to create a one-step state transition prob-
ability matrix for each fuzzy state transition. If pij is the
transition probability from state i to state j [24], then the
one-step transition probability matrix from state i to state j
is defined as

P = [pij ] =


p00 p01 p02 . . . p0k
p10 p11 p12 . . . p1k
p20 p21 p22 . . . p2k
...

...
...

. . .
...

pk0 pk1 pk2 . . . pkk

 , (19)

where pij ≥ 0 dan
∑∞

j=0 pij = 1 (i, j = 0, 1, 2, . . . ).
14. Perform fuzzification, whichmaps crisp values to fuzzy value

[25]. The fuzzified form for the next period is calculated
by multiplying the fuzzy vector of the previous period with

the one-step transition probability matrix in Equation (19),
expressed as

F (ε (k + 1)) = F (ε (k))× P

= {µA1 (ε(k + 1)) , µA2 (ε(k + 1) , . . . ,

µAn (ε(k + 1))} ,
(20)

where µAi (ε (k + 1)) is the membership function of the rel-
ative error (k + 1) (ε(k + 1)) of the fuzzy set Ai.

15. Perform defuzzification to change fuzzy values back into
crisp values [26] by calculating the crisp value as the sum
of the average membership functions, with the weight be-
ing the membership degree of each existing fuzzy set [17],

ε (k + 1) =
1

2

[
n∑

i=1

µAi
(ε (k + 1)) (di−1 + di)

]
, (21)

where di−1 and di are the lower and upper limits of the in-
terval class.

16. Lastly, the FGMM(1,1) forecast value of gold prices is given
by Equation (22),

ŷ (k + 1) =
x̂(0) (k + 1)

1− ε(k + 1)
, k = 1, 2, . . . , n. (22)

2.2. Fuzzy Grey Markov Model (2,1)
FGMM(2,1) has almost the same concept as FGMM(1,1),

but it utilizes relative error values obtained from GM(2,1). In
FGMM(2,1), the forecast initiation uses the GM(2,1), which theo-
retically a derivative of GM(1,1). In the previous GM(1,1), 1-AGO
was used to form new data in forecasting. Meanwhile, GM(2,1),
a One-time Inverse Accumulated Generating Operation (1-IAGO),
is used as input in the calculation. Theoretically, GM(2,1) helps
describe data by a non-monotonic change process [21].

To construct the FGMM(2,1), we adhere to the following
steps:
1. The first step is to perform GM(2,1) forecasting by using the
actual gold price data sequence in Equation (1), the 1-AGO
sequence in Equation (2), and the MGO sequence in Equa-
tion (3). Then, create a new data sequence from actual data,
the 1-IAGO sequence:

α(1)X
(0)

=
(
α(1)x

(0)
(2) , α(1) x(0) (3) , · · · , α(1) x(0) (n)

)
,

(23)

where α(1)x
(0)

(k) = x(0) (k) − x(0) (k − 1) and k =
2, 3, . . . , n.

2. The GM(2,1) difference equation is

α(1)x(0) (k) + c1x
(0) (k) + c2z

(1) (k) = g, (24)

where ′c
′
1 and

′c′2 are the developing coefficient, and
′g′ the

Grey input value. The values of parameters ′c
′
1,

′c′2 and
′g′

can be calculated by the least square method, resulting in
Equation (25), Equation (26) and Equation (27).

c1 =
C1

C2
(25)
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c2 =
C3

C4
(26)

with

C1 = ((n− 1)S6 − S4 · S0)S3 − S2
1 · S6

+ S4 · S1 · S5 + ((1− n)S5 + S0 · S1)S7

C2 =
(
(1− n)S2 + S2

0

)
S3 + S2

1 · S2

+ ((n− 1)S5 − 2S1 · S0)S5

C3 = ((n− 1)S6 − S4 · S1)S2 + ((1− n)S5 + S0 · S1)S6

+ S0 (S4 · S5 − S0S7)

C4 =
(
(1− n)S3 + S2

1

)
S2 + S2

0 · S3

+ ((n− 1)S5 − 2S1 · S0)S5

S0 =

n∑
k=2

x(0) (k), S1 =

n∑
k=2

z(1) (k), S2 =

n∑
k=2

[
x(0) (k)

]2
,

S3 =

n∑
k=2

[
z(1) (k)

]2
, S4 =

n∑
k=2

α(1)x(0) (k),

S5 =

n∑
k=2

x(0) (k) · z(1) (k), S6 =

n∑
k=2

x(0) (k) · α(1)x(0) (k) ,

S7 =

n∑
k=2

z(1) (k) · α(1)x(0) (k),

and

g =
1

n− 1
[S4 + c1S0 + c2S1] . (27)

3. The solution of the second-order differential equation in
Equation (24) is given by

x̂(1) (k + 1) = x(1) (k + 1) +
g

c2
, (28)

where x(1) (k + 1) is a general solution of the homoge-
neous equation in Equation (24). The value of x(1) (k + 1)
can be calculated using the characteristic function, namely
λ2 + c1λ+ c2 = 0 with ∆ = c21 − 4c2.
There are three possible situations for determining the value
x(1) (k + 1), such as:
(a) If ∆ > 0, then the value of x(1) (k + 1) can be ob-
tained using the formula

x(1) (k + 1) = v1e
λ1k + v2e

λ2k, (29)

where λ1 =
−c1+

√
c21−4c2
2 and λ2 =

−c1−
√

c21−4c2
2 .

(b) If ∆ = 0, then the value of x(1) (k + 1) can be ob-
tained using the formula

x(1) (k + 1) = eλk (v1 + v2k) , (30)

where λ1 = λ2 = λ.
(c) If ∆ < 0, then the value of x(1) (k + 1) can be ob-
tained using the formula

x(1) (k + 1) = eγk (v1cos (βk) + v2sin (βk)) , (31)

where γ = − c1
2 and β =

√
4c2−c21
2 .

4. The forecast value of GM(2,1) can be given using Equa-
tion (9) in GM(1,1), which includes solving the solution of the
second-order differential equation, x̂(1) (k + 1), with Equa-
tion (28).

5. The next step is to use the Markov chain and fuzzy logic
concepts in the calculation to obtain the forecast value of
FGMM(2,1), following the algorithm previously discussed in
FGMM(1,1).

2.3. Forecasting Accuracy
Forecasting attempts to predict future conditions by ex-

amining past conditions [1]. The forecasting carried out is ex-
pected to minimize the value of forecasting errors, one of which
can be measured using MAPE. The average of the error values,
which considers the influence of the actual value on the model,
expresses MAPE [27], which can be calculated using the formula

MAPE =

∑n
t=1

∣∣∣Y (t)−Ŷ (t)
Y (t)

∣∣∣
n

, (32)

where Y (t) is the actual value and Ŷ (t) is the forecast value. Ac-
cording to Lewis (1982) in Lawrence [27], there is a scale to judge
the accuracy of a model based on the MAPE measure, explained
as follows:

Table 1. Accuracy scale based on MAPE

MAPE Level of accuracy
≤ 10% Highly accurate forecast

10% < MAPE ≤ 20% Good forecast
20% < MAPE ≤ 50% Reasonable forecast

> 50% Inaccurate forecast

3. Results and Discussion
This study uses daily gold price data in Indonesia as the

forecasting object. Based on data from https://logammulia.com,
the price of gold from February 1, 2024, to March 1, 2024, expe-
rienced fluctuations so that sometimes it did not follow a consis-
tent pattern of increases or decreases in the data. Therefore, gold
price data is categorized as non-monotonic data. Under these
conditions, the FGMM(2,1) method, which uses GM(2,1) as the
initial forecasting initiation, is a forecasting method that can be
considered for handling non-monotonic gold data, apart from us-
ing FGMM(1,1), which has been used in previous research.

3.1. Fuzzy Grey Markov Model (1,1) Forecasting
The first step in predicting gold prices is to calculate the

forecast values using GM(1,1) from Equation (1) to Equation (10).
These results are shown in Table 2, which also shows the value
of the relative error between the actual value and the predicted
value calculated using Equation (11).

Then, the value of relative error is used to determine
the universe of discourse, state deviation, and the boundary of
each state description for the FGMM(1,1). By employing Equa-
tion (12)–(14), five states are identified within the range U =
[−1.8 , 1.4], thereby presenting the value of each limit as dis-
played in Table 3.
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Table 2. GM(1,1) forecasting values

Days Actual Value GM (1,1) Relative Error
1 1,143,000 1,143,000 0
2 1,151,000 1,135,630 1.3353
...

...
...

...
29 1,138,000 1,130,096 0.6945
30 1,142,000 1,129,892 1.0603

Table 3. State description for FGMM(1,1)

Fuzzy sets Description Range
A1 Very low gold prices [−1.8 , −1.16]
A2 Low gold prices [−1.16 , −0.52]
A3 Medium gold prices [−0.52 , 0.12]
A2 High gold prices [0.12 , 0.76]
A3 Very high gold prices [0.76 , 1.4]

Base on Equation (15)–(17), we construct the membership
function for each fuzzy state as:

µ1(x) =

 1 ; −1.8 ≤ x ≤ −1.48
−1.68−2x

1.28 ; −1.48 ≤ x ≤ −0.84
0 ; otherwise,

µ2(x) =


2x+2.96
1.28 ; −1.48 ≤ x ≤ −0.84

−0.4−2x
1.28 ; −0.84 ≤ x ≤ −0.2

0 ; otherwise,

µ3(x) =


2x+1.68
1.28 ; −0.84 ≤ x ≤ −0.2

0.88−2x
1.28 ; −0.2 ≤ x ≤ 0.44

0 ; otherwise,

µ4(x) =


2x+0.4
1.28 ; −0.2 ≤ x ≤ 0.44

2.16−2x
1.28 ; 0.44 ≤ x ≤ 1.08

0 ; otherwise,

µ5(x) =


2x−0.88

1.28 ; 0.44 ≤ x ≤ 1.08
1 ; 1.08 ≤ x ≤ 1.4
0 ; otherwise.

Then, the fuzzy vector for day-1 is calculated by substi-
tuting the relative error value of day-1 into a fuzzy membership
function. The relative error value for day-1 is 0, so using Equa-
tion (18), we obtain the membership degrees as µ1 (x) = 0,
µ2 (x) = 0, µ3 (x) = 0.6875, µ4 (x) = 0.3125, and µ5 (x) = 0.
Therefore, the fuzzy vector for day-1 is (0, 0, 0.6875, 0.3125, 0).
Equation (19) gives the one-step transition probability matrix as

P =


p11 p12 0 0 0
0 p22 p23 0 0
p31 0 p33 p34 p35
0 0 p43 p44 p45
0 0 0 p54 0

 ,

with
p11 = 0.66666667, p34 = 0.42857143,
p12 = 0.33333333, p35 = 0.14285714,
p22 = 0.66666667, p43 = 0.2,
p23 = 0.33333333, p44 = 0.73333333,
p31 = 0.14285714, p45 = 0.06666667,
p33 = 0.28571429, p54 = 1.

Then, the fuzzified form for day-2 can be calculated using
Equation (20) by multiplying the day-1 fuzzy vector with the one-
step transition probability matrix. So, the vector membership
degree for day-2 is (0.0982, 0, 0.2589, 0.5238, 0.119). Conse-
quently, the relative error for day-2 using Equation (21) is 0.1619.

Finally, the gold price prediction for day-2 using FGMM(1,1)
in Equation (22) is given by

ŷ(0) (k + 1) =
1, 135, 630.18
1− 0.001619

= 1, 137, 471.801.

Furthermore, in the same way, the gold price forecast value can
be calculated with FGMM(1,1) from day-3 until day-30. Table 4
shows the gold price forecast results with FGMM(1,1), obtained
with the help of python.

Table 4. FGMM(1,1) forecasting values

Days Actual Value FGMM(1,1)
1 1,143,000 1,143,000
2 1,151,000 1,137,471.801
...

...
...

29 1,138,000 1,133,551.457
30 1,142,000 1,134,299.65

3.2. Fuzzy Grey Markov Model (2,1) Forecasting
We forecast gold prices in Indonesia using the FGMM(2,1)

method, which is a combined forecasting method using deriva-
tives of GM(1,1), namely GM(2,1), as the initial forecasting initia-
tion. In FGMM(2,1), apart from the actual data sequences, 1-AGO
and MGO from Equation (1), Equation (2), and Equation (3), it
is also necessary to form the 1-IAGO sequence in Equation (22),
which is the inverse of the 1-AGO sequence. From that, we are
able to determine the parameter values c1, c2 and g using Equa-
tion (25)–(27), and carry out initial forecasting with GM(2,1), in-
cluding finding a general solution of the homogeneous equation
of Equation (24) with Equation (28). Table 5 shows the forecast-
ing results with GM(2,1) and the relative error between the actual
and the predicted value.

Table 5. GM(2,1) forecasting values

Days Actual Value GM (2,1) Relative Error
1 1,143,000 1,143,000 0
2 1,151,000 1,143,872.650 0.6192
...

...
...

...
29 1,138,000 2,043,988.584 -79.6124
30 1,142,000 2,262,679.143 -98.133

Then, we continue forecasting FGMM(2,1) using the same
technique as the previous method and obtain the following re-
sults as follows:
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Table 6. FGMM(2,1) forecasting values

Days Actual Value FGMM(2,1)
1 1,143,000 1,143,000
2 1,151,000 1,039,042.688
...

...
...

29 1,138,000 1,119,864.290
30 1,142,000 1,201,571.421

3.3. Comparison of FGMM(1,1) and FGMM(2,1) in Forecasting Gold
Prices in Indonesia

Based on the results of the three methods presented in Ta-
ble 3 and Table 6, we compared the performance value between
FGMM(1,1) and FGMM(2,1) using MAPE on Equation (32), shown
in Table 7.

Table 7. Model evaluation base on MAPE

Model MAPE Judgment of Forecast Accuracy
FGMM(1,1) 0.28% Highly accurate
FGMM(2,1) 4.32% Highly accurate

Based on the model evaluation shown in Table 7, we can
see that the MAPE value of the FGMM(1,1) method is smaller
than that of FGMM(2,1), so we can conclude that the FGMM(1,1)
method provides more accurate gold price forecasting results
than FGMM(2,1). This difference may be due to the limited data,
which might prevent FGMM(2,1) from performing optimally. In
contrast, FGMM(1,1) is more straightforward to interpret with
limited data and does not experience drastic changes. However,
both methods are highly accurate in gold price forecasting, con-
sidering that both MAPE values remain in the category of accu-
rate forecasting scale. Also, FGMM(2,1) can perform better than
GM(2,1) and GMM(2,1) in forecasting future gold prices. A com-
parison graph of the results of gold price forecasting in Indonesia
using FGMM(1,1) and FGMM(2,1) is presented in Figure 1.

Figure 1. Comparison graph of actual and forecasted values

From the Figure 1, we can see that the graph of the fore-
casting results for gold prices in Indonesia using FGMM(1,1)
almost coincides with the actual data. These results indicate
that FGMM(1,1) provides more precise forecasting results than
FGMM(2,1). So that, FGMM(1,1) was chosen as the best method
for predicting gold prices in Indonesia. Although both methods
are equally reliable for the prediction of gold prices.

4. Conclusion
The results of forecasting gold prices in Indonesia show

that the FGMM(1,1) method provides a forecast value close to
the actual value. Meanwhile, the FGMM(2,1) forecasting results
are lower than the actual value at the beginning of the forecast-
ing period. The accuracy of forecasting gold prices in Indonesia
based on the MAPE value using the FGMM(1,1) method is 0.28%,
and the FGMM(2,1) method is 4.32%. These results indicate that
the FGMM(1,1) method provides more accurate forecasting val-
ues. Nevertheless, both methods are equally accurate in the
forecast of gold prices, considering that both MAPE values re-
main on a highly accurate forecasting scale. Therefore, both the
FGMM(1,1) and FGMM(2,1) are reliable for gold price forecasting,
while FGMM(1,1) is slightly superior in terms of forecasting accu-
racy.
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