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ABSTRACT. Tuberculosis (TB) is caused by bacteria (Mycobacterium tuberculosis) that most commonly attacks the
lungs. TB is spread from person to person through the air. When people with pulmonary TB cough, sneeze, or spit,
they propel TB germs into the air. By inhaling only a small number of these germs, a person can become infected.
Tuberculosis is curable and preventable. Prevention that can be done is by providing education about TB and vaccines.
While treatment can be done by treating infected individuals. This study examines the TB epidemic model with the
application of control, by finding optimal control solutions using the Pontryagin Minimum Principle method. In this
study, three control variables were applied, namely education, vaccination and treatment. Numerical calculations were
carried out using the Forward Backward Sweep 4th order Runge Kutta method and and then simulated. The results
of the numerical simulation of the TB epidemic model show that by implementing control in the form of education,
vaccination, and treatment, the population of infected individuals can be reduced.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJoM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Tuberculosis (TB), or Tb (short for ”Tubercle bacillus”) or ke-
matus is a common infectious disease, and in many cases fatal.
It is caused by various strains of mycobacteria, most commonly
Mycobacterium tuberculosis (abbreviated ”MTb” or ”MTbc”) [1].
Tuberculosis usually attacks the lungs, but can also affect other
parts of the body. Tuberculosis is spread through the air when
someone with active TB infection coughs, sneezes, or otherwise
spreads their saliva droplets through the air [2]. Most TB infec-
tions are asymptomatic and latent (often called latent TB). How-
ever, one in ten cases of latent infection progress to active dis-
ease (active TB). If tuberculosis is not treated, more than 50% of
people who are infected can die. Before the discovery of effec-
tive antibiotics to treat TB (around the early 1900s), an estimated
1 in 7 people in the world died from the disease.

According to the World Health Organization, TB is still a
global health problem today. TB is the second leading cause of
death in the world after COVID-19 in 2022. More than 10 million
people are infected with TB each year. Without treatment, the
death rate from TB is high (around 50%). Globally in 2022, TB
caused around 1.30 million deaths. With WHO-recommended
treatment, 85% of TB cases can be cured. The number of people
newly diagnosed with TB globally was 7.5 million in 2022. Thirty
countries with a high TB burden accounted for 87% of the world’s
TB cases in 2022 and two-thirds of the global total occurred in
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eight countries: India (27%), Indonesia (10%), China (7.1%), Philip-
pines (7.0%), Pakistan (5.7%), Nigeria (4.5%), Bangladesh (3.6%) and
the Democratic Republic of the Congo (3.0%). In 2022, 55% of TB
patients were male, 33% female, and 12% were children (aged 0–
14 years) [1].

Tuberculosis (TB) is a chronic infectious disease that is still
a public health problem. Based on the 2023 Global TB Report,
Indonesia is in second place with the largest number of TB cases
in the world after India, followed by China. With an estimated
number of TB cases of 1,060,000 TB cases and 134,000 deaths
due to TB per year in Indonesia (there are 17 people who die
from TB every hour). As an effort to control TB, the government
issued Presidential Regulation No. 67 of 2021 concerning TB Con-
trol. There are six TB control strategies in Indonesia, namely:
1) Strengthening the commitment and leadership of the central,
provincial, and district/city governments to support the acceler-
ation of TB elimination by 2030; 2) Increasing access to quality
and patient-centered TB services; 3) Optimization of promotion
and prevention efforts, provision of preventive TB treatment, and
infection control; 4) Utilization of research results and screening
technology, diagnosis, and management of TB; 5) Increasing the
role of communities, partners, and other multi-sectors in elimi-
nating TB; and 6) Strengthening program management through
strengthening the health system.

Mathematical researchers use dynamic system modeling in
order to participate in predicting and preventing this outbreak
from becoming an epidemic. Dynamic system modeling is an an-
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alytical approach used to understand and describe the behavior
of a complex system. Dynamic system modeling not only pre-
dicts the dynamics of changes in the number of infected individ-
uals but can also include the role of control to overcome the out-
break; the theory of using such control is called the Pontryagin
Minimum Principle [3–10]. Mathematical models have an impor-
tant role in understanding the dynamics of infectious diseases,
including Tuberculosis [11, 12]. Most TB models are of the SEIR
type, where the population is divided into susceptible, exposed,
infectious, and excluded [13]. In previous studies, this type of
tuberculosis model discussed disease control by considering the
role of disease transmission parameters that can help reduce val-
ues below threshold values [14–16]. Many authors have used the
concept of fractional calculus [17–26], and obtained several sig-
nificant contributions that are useful in many disease dynamics
[27–35]. Mahardika and Kartika [36] in his research explained
the Tuberculosis epidemic model with control using the Pontrya-
gin Minimum Principle. In the study, the dynamic modeling of
Tuberculosis with control stated that vaccination and treatment
successfully reduced the population of infected individuals. This
study will examine the addition of optimal control in the form
of an educational campaign to prevent TB and analyze how this
control works in the model used.

In previous studies of Mahardika and Kartika [36], the SEIR
type TB model was used using control measures in the form of
vaccination and treatment. Furthermore, this study used the SEIR
type TB model with control measures in the form of educational
campaign, vaccination, and treatment with the aim of reducing
the number of infected individuals.

2. Model

2.1. Dynamic System Model of Tuberculosis Disease

In this section, we discuss the mathematical model of tu-
berculosis spread. There are many mathematical theories about
the concept of disease spread. The basic idea of this theory is
that everyone becomes healthy and suppresses the spread of the
disease. In this study, four population classes are used, Suscepti-
ble (S), Exposed (E), Infectious (I), and Cured (R), the dynamic
model of tuberculosis is described in the following differential
equation system [36]:

Ṡ = ϱ− φSI − σS, (1)

Ė = (1− ω)φSI − σE − γE, (2)

İ = ωφSI + γE − σI − ψI − τI, (3)

Ṙ = τI − σR, (4)

with initial conditions S (0) ≥ 0, E (0) ≥ 0, I (0) ≥ 0, R(0) ≥ 0.

The birth rate is constant in the susceptible class and is
given by ϱ, disease transmission occurs as a result of contact be-
tween susceptible and infected individuals. The parameter rate
from exposed to infectious form given as γ, the transmission co-
efficient form given as φ and ω. The natural death rate in each
compartment is assumed to be the same and is given as σ, and
deaths due to disease occur only in the Infection compartment
and are given as ψ.

2.2. Dynamic System Model of Tuberculosis Disease with Optimal
Control

Then in this study, from the TB dynamic system model with
the SEIR type, it was developed by applying control actions, so
that the mathematical model of the TB dynamic system with the
application of control actions is as follows:

Ṡ = ϱ− φSI − σS − ζ1S, (5)

Ė = (1− ω)φSI − σE − γE − ζ2E, (6)

İ = ωφSI + γE − σI − ψI − τI − ζ3I, (7)

Ṙ = τI − σR+ ζ1S + ζ2E + ζ3I, (8)

with initial conditionsS (0) ≥ 0, E (0) ≥ 0, I (0) ≥ 0, R(0) ≥ 0.
Optimal control is a way to determine which control vari-

ables will cause the process to meet some physical constraints
and minimize the objective function that has been determined in
this study. The formulation requires a control process for math-
ematical description (or model), specification of performance in-
dices, and statement of boundary conditions and physical and/or
control constraints [10]. The control variables used in this model
are ζ1, ζ2, ζ3 which represent the education campaign, vacci-
nation, and treatment. First, assume that all susceptible pop-
ulations have the opportunity to be aware of the dangers of TB
disease (education campaign) ζ1(t), vaccination ζ2(t), so that the
susceptible TB population ζ1(t) transmits from population S(t)
to population E(t) and ζ2(t) transmits from population E(t) to
population I(t). Active treatment ζ3(t) can reduce the number
of infected individuals transmitting from population I(t) to pop-
ulation R(t).

3. Results and Discussion
3.1. Control Analysis

The goal of optimal control is to reduce the number of in-
fected population and carry out control actions. Then the ob-
jective function according to the control variables and dynamic
model (5)-(8) is as follows:

J (ζ1, ζ2) =

∫ tf

0

A1I +
A2

2
ζ21 (t) +

A3

2
ζ22 (t) +

A4

2
ζ23 (t)dt ,

(9)
The implementation cost of the controls is represented by

a quadratic term of objective functional F (ζ1 (t) , ζ2 (t) , ζ3 (t)).
A1, A2, A3, A4 represent the weights related to infected hu-
mans, educational campaign control, vaccination control, and
treatment control, respectively. The objective of this study is to
use the minimal possible control variables ζ1, ζ2, ζ3 and mini-
mize the population of infected individuals.

The optimal control problem is to find the control ζ1, ζ2, ζ3
with the appropriate state variables on the time interval, which
minimizes the objective function (9) with the system dynamics
constraints (5)-(8):

J (ζ∗1 , ζ
∗
2 , ζ

∗
3 ) = min︸︷︷︸

Ω

J (ζ1, ζ2, ζ3) , (10)

with Ω = (ζ1, ζ2, ζ3) |0 ≤ ζ1 ≤ ζ∗1 , 0 ≤ ζ2 ≤ ζ∗2 , 0 ≤ ζ3 ≤ ζ∗3 .
In this study, the Hamiltonian function is obtained as fol-

lows

H = (I, ζ1, ζ2, ζ3, ϑ1, ϑ2, ϑ3, ϑ4) (11)
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= A1I +
A2

2
ζ21 (t) +

A3

2
ζ22 (t) +

A4

2
ζ23 (t) + ξ1Ṡ (t)

+ ξ2Ė (t) + ξ3İ (t) + ξ4Ṙ(t).

Theorem 1. Given the solutions S∗ (t) , E∗ (t) , I∗ (t) , R∗(t)
and the optimal controls ζ∗1 (t) , ζ

∗
2 (t) , ζ

∗
3 (t) of the correspond-

ing state system in eq. (5)−(8) are the adjoint variables that satisfy
the following equations:

ξ̇1 (t) = − (ξ1 (−φI − σ − ζ1) + ξ2 ((1− ω)φI)

+ξ3 (ωφI) + ξ4 (ζ1)) ,

ξ̇2 (t) = − (ξ2 (−σ − γ − ζ2) + ξ3 (γ) + ξ4 (ζ2)) ,

ξ̇3 (t) = − (A1 + ξ1 (−φS) + ξ2 ((1− ω)φS)

+ξ3 (ωφS − σ − ψ − τ − ζ3) + ξ4 (τ + ζ3)) ,

ξ̇4 (t) = − (ξ4 (−σ)) ,

ζ∗1 = max
{
0, min

{
S (ξ1 − ξ4)

A2

}
, 1

}
,

ζ∗2 = max
{
0, min

{
E (ξ2 − ξ4)

A3

}
, 1

}
,

ζ∗3 = max
{
0, min

{
I (ξ3 − ξ4)

A4

}
, 1

}
.

Proof. Differentiate the Hamiltonian equation H based on their
respective conditions and use the PMP method to obtain the ad-
joint variable equation and with respect to transversality condi-
tions, we have

dξ1
dt

= − ∂H

∂S
= − (ξ1 (−φI − σ − ζ1) + ξ2 ((1− ω)φI)

+ ξ3 (ωφI) + ξ4 (ζ1)) ,

dξ2
dt

= − ∂H

∂E
= − (ξ2 (−σ − γ − ζ2) + ξ3 (γ) + ξ4 (ζ2)) ,

dξ3
dt

= − ∂H

∂I
= − (A1 + ξ1 (−φS) + ξ2 ((1− ω)φS)

+ ξ3 (ωφS − σ − ψ − τ − ζ3) + ξ4 (τ + ζ3)) ,

dξ4
dt

= − ∂H

∂R
= − (ξ4 (−σ)) ,

∂H

∂ζ1
= 0 ⇒ A2ζ1 − ξ1S + ξ4S = 0,

ζ1 =
S (ξ1 − ξ4)

A2
,

∂H

∂ζ2
= 0 ⇒ A3ζ2 − ξ2E + ξ4E = 0,

ζ2 =
E (ξ2 − ξ4)

A3
,

∂H

∂ζ3
= 0 ⇒ A4ζ3 − ξ3I + ξ4I = 0,

ζ3 =
I (ξ3 − ξ4)

A4
,

ζ∗1 = max
{
0,min

{
S (ξ1 − ξ4)

A2

}
, 1

}
,

ζ∗2 = max
{
0,min

{
E (ξ2 − ξ4)

A3

}
, 1

}
,

ζ∗3 = max
{
0,min

{
I (ξ3 − ξ4)

A4

}
, 1

}
.

3.2. Numerical Simulation
The mathematical model of tuberculosis introduced in this

study includes several important factors in the handling and pre-
vention of the spread of TB disease. We use numerical methods
to solve the optimal control problem [24–27]. In this study we
use the PMP method using the Forward Backward Sweep 4th or-
der Runge Kutta. The parameter values are presented in Table 1.

Table 1. Description and values of parameters

No Descriptions Parameter Value
1 Initial value (point) of Re-

covered
R(0) 1000

2 Initial value (point) of In-
fectious

I(0) 2292

3 Initial value (point) of Ex-
posed

E(0) 10000

4 Initial value (point) of Sus-
ceptible

S(0) 1.668 × 106

5 Natural Death rate σ 0.0101
6 Death rate due to infection ψ 0.2
7 Rate from infectious to re-

covery
τ 0.25

8 Rate from exposed to in-
fectious

γ 0.05

9 Transmission coefficient ω 0.128
10 Transmission coefficient φ 0.00002
11 Birth rate ϱ 0.0121

In this chapter, the graphs of the dynamic system without
optimal control (1) and with optimal control (2) will be compared.
The type of optimal control in this case is fixed time (T = 10
years) and free endpoint (x(0) is determined, but x(T ) is free)
[16], where x is a state variable (x = S,E, I,R).

Figure 1. Simulation of SEIR without control

JJoM | Jambura J. Math Volume 7 | Issue 1 | February 2025
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Figure 2. Simulations of SEIR without and with control for each subpopulation

Figure 1 and Figure 2 is the result of a numerical simulation
using Matlab software in solving the optimal control problem in
a mathematical model of the spread of Tuberculosis. The sim-
ulation results show that in the population of susceptible and
infected individuals, before being given control measures, there
was a decrease as well as when given control measures, but when
given control measures at the beginning of the observation there
was a faster decrease compared to without control. In the pop-
ulation of exposed individuals, it can be seen that before being
given control, there was a very significant increase, and after be-
ing given control at the beginning of the observation there was
a slight increase after that there was a decrease and towards 0.
In the population of recovered individuals, it shows that before
being given control measures there was an increase but not sig-
nificant, but after being given control measures there was a sig-
nificant increase.

We develop a mathematical model of the spread of SEIR
type tuberculosis disease by implementing control measures.
There are three control measures used in this study, namely with
education campaigns, vaccinations and treatment. The existence
of optimal control and its properties are calculated and evaluated.
Based on the simulation results, the provision of optimal control
in the form of education campaigns, vaccinations and treatment,
which shows that the optimal control offered can meet the re-
search objectives of reducing the population of infected individ-
uals. This study will provide statistics to assist the government
in making choices and implementing actions to combat tubercu-
losis disease.

4. Conclusion

In this study, the model for the spread of tuberculosis con-
sists of four subpopulations: Susceptible (S), Exposed (E), In-
fectious (I), and Cured (R), known as the SEIR model. Further-
more, three control measures are applied based on the mathe-
matical model: ζ1, ζ2, and ζ3, representing education campaigns,
vaccination, and treatment, respectively. The objective of opti-
mal control is to reduce the number of infected individuals. The
existence of optimal control within the SEIR mathematical model
for tuberculosis spread has been demonstrated. In this study, the
Pontryagin Maximum Principle (PMP) method was applied, com-
bined with the fourth-order Runge-Kutta numerical method, and
simulations were conducted using MATLAB software. Based on
the simulation results, the control variables implemented in this
study effectively achieved the research objective of reducing the
infected population.
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