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Optimized Approach to Electric Vehicle Routing Problem with Time
Windows using Grasshopper Optimization Algorithm

Adifa Yasin Aksyarafah1 and Nughthoh Arfawi Kurdhi1,∗

1Department of Mathematics, Universitas Sebelas Maret, Surakarta, Indonesia

ABSTRACT. The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is a complex logistics issue that
involves optimizing delivery routes for electric vehicles while adhering to strict time limits, managing limited bat-
tery capacity, and addressing recharging needs. In this research, we introduce an optimized method to tackle the
EVRPTW using the Grasshopper Optimization Algorithm (GOA), a metaheuristic inspired by the swarming behavior
of grasshoppers. We utilize the Solomon dataset, a recognized benchmark in logistics and vehicle routing, to assess
the effectiveness of our proposed algorithm. Our focus is on minimizing the total distance traveled while ensuring
timely deliveries and effectively managing battery logistics and recharging. Comparative analysis indicates that the
GOA surpasses traditional methods in route efficiency, reducing travel distances, and enhancing logistical operations.
This study highlights the potential of GOA as a valuable tool for overcoming the challenges associated with electric
vehicle logistics, paving the way for more sustainable and efficient transportation systems.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJoM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Indonesia’s government has enacted Presidential Regula-

tion Number 55 of 2019 to accelerate the conversion of battery
electric vehicles (BEVs) for use on roads, including electric cars
[1, 2]. This move is aimed at reducing pollution levels and ad-
dressing social and transportation issues [3, 4]. The transporta-
tion sector is transitioning to electric energy to reduce green-
house gas emissions and address urban health issues [5]. EVs
are energy-efficient and can benefit public transit, food delivery,
courier, and distribution businesses [6]. However, adoption re-
mains limited due to challenges like restricted driving range, high
costs, lengthy charging times, and infrastructure scarcity [7, 8].
Electric vehicles are gaining popularity as a sustainable alterna-
tive to fossil fuels due to their ability to decrease greenhouse gas
emissions and air pollution [9].

The growing use of electric cars in transportation and logis-
tics has sparked interest in the Electric Vehicle Routing Problem
(EVRP) in research and industrial applications [10]. EVRP is an
extension of the basic VRP that includes considerations of charg-
ing requirements [11]. The EVRP is an optimization problem that
uses a variety of optimization techniques and algorithms to dis-
cover the best route plan for electric vehicles while minimizing
expenses, adhering to operating constraints, and taking charging
requirements [8]. Metaheuristic algorithms are precise optimiza-
tion techniques used to find nearoptimal solutions [12] in com-
plex problems like scheduling, machine learning, supply chain
management, engineering, and routing [13]. It is evident that
these algorithms can provide high-quality solutions for optimiza-
tion problem. Additionally, metaheuristic algorithms are effec-
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tive in solving of complex optimization problems, including the
EVRP [14]. Some commonly used methods include Genetic Algo-
rithm (GA), Variable Neighborhood Search (VNS), and Ant Colony
Optimization (ACO) [15].

In this paper, we present the Grasshopper Optimization
Algorithm (GOA) is an algorithm inspired by the behaviour of
grasshoppers swarms [16] to solve optimization problems. In the
first step of initialisation with GOA, grasshoppers move widely,
which helps them to search globally for food, and move locally in
the last stage of optimisation, which allows them to exploit the
search space [17]. This algorithm is able to solve optimisation
problems better than some other algorithms such as Bat Algo-
rithm, Genetic Algorithm, Flower Pollination Algorithm, Firefly
Algorithm, and Particle Swarm Optimisation Algorithm. The re-
sults obtained using GOA have better solutions with a high level
of accuracy, and are easy to implement [16].

The Electric Vehicle Routing Problem with Time Windows
(EVRPTW) incorporates EV routing and charging at available sta-
tions, influenced by the vehicle’s battery level upon arrival. The
GOA designed to efficiently navigate the complexities of EVRPTW
by leveraging its unique optimization capabilities. The paper
uses Solomon’s benchmark problems to test and assess the ef-
fectiveness of the GOA. The algorithm’s effectiveness and effi-
ciency are demonstrated, showing competitive solutions within
reasonable computational times. The findings have practical im-
plications for logistics companies and urban transportation plan-
ning. The study concludes with suggestions for future research
to refine and adapt the GOA to address more complex EVRPTW
problems.
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2. Model
2.1. Model Construction

The Electric Vehicle Routing Problem with Time Windows
(EVRPTW) is a complex optimization challenge that integrates lo-
gistics, energy management, and time-sensitive delivery opera-
tions. With the increasing adoption of electric vehicles (EVs),
there is a need to optimize routes to minimize travel distances
and ensure timely deliveries, considering battery capacities and
recharging station availability. The problem is typically modeled
using graph theory, with the objective of identifying the most
efficient routes for a fleet of EVs to serve a set of customers
within designated time windows. Themathematical model of the
EVRPTW is formulated using a directed graph G= (V,E), where
V represents the set of vertices and E represents the set of edges
connecting these vertices. The model provides a framework for
solving the EVRPTW, considering factors such as travel distances,
service times, and battery limitations. The definitions and no-
tations utilized in the model are summarized in Table 1 and the
EVRPTWmodel’s settings and notations are described as follows:

Table 1. Parameter and decisions variable for EVRP

Notation Description
Sets

N Set of customers, {1, 2, . . . , n} , i, j ∈ N
SM Set of charging stations, {1, 2, . . . ,m} , l ∈

S
Set of recharging stations

V Set of customers, charging stations, and de-
pot, V = N ∪ S ∪O

K The set of EVs,K = {1, 2, . . . , p} , k ∈ K
Parameter

dij The distance between nodes i and j
tij The travel time between nodes i and j
qi The demand of customer node i
ai Earliest service start time at customer i
bi Latest service start time at customer i

siwiti Service time at customer i with s0 = sl = 0
The waiting time of an EV at customer i
The arrival time of an EV at customer i

Q The load capacity of an EV
B The battery capacity of an EV
C Vehicle capacity
h Charge consumption rate

Decision Variables
xijk A binary variable indicating whether the EV

travels from node i to node j
τi The arrival time of EV at node i
yi The remaining battery capacity of EV at node

i
ui The load of vehicle k after visiting node i

The mathematical model of the EVRPTW is formulated to
address the complex challenge of optimizing routes for EVs while
adhering to time constraints and considering vehicle capacities.
Minimize the total distance traveled is the goal by the fleet of EVs
while meeting all specified constraints. The model is defined as
follows:

Minimize

f =
∑
l

∑
j

K∑
k=1

dijxijk (1)

Subject to ∑
i∈V

xijk =
∑
i∈V

xjik = 1, ∀j ∈ V (2)

∑
j

x0jk = 1, k ∈ K (3)

∑
i

xi0k = 1, k ∈ K (4)

∑
i∈V

xijk −
∑
i∈V

xjik = 0, ∀j ∈ V (5)

0 ≤ uj ≤ ui − qixijk +Q(1− xijk) (6)

0 ≤ u0 ≤ Q (7)

y0 = B, yi = B, ∀j ∈ S, k ∈ K (8)

yi ≤ B, ∀j ∈ V, k ∈ K (9)

0 ≤ yj ≤ yi−hdijxijk+B (1− xijk) , ∀i, j ∈ V, k ∈ K (10)

0 ≤ yj ≤ B − hdijxijk, ∀i ∈ S, k ∈ K (11)

ai ≤ τi + wi ≤ bi, ∀i ∈ V (12)

wi = max {ai − ti, 0}, ∀i ∈ V (13)

ti = τi, ∀i ∈ V (14)

xijk ∈ {0, 1} , ∀i, j ∈ V, k ∈ K (15)

ui, yi, τi ≥ 0, ∀i ∈ V. (16)

This model integrates constraints for battery capacities,
time windows, and route optimization to ensure that the routes
are efficient and feasible for electric vehicles. The variables in the
model represent decisions on vehicle routes, recharging points,
and time windows, with the objective function aiming to min-
imize the overall distance traveled by the fleet. By addressing
these factors, the model helps in formulating effective strategies
for managing EV routes in logistics operations. The goal of the
function of EVRP (1) is to reduce the total distance. Constraint (2)
ensure that each customer visited by exactly one vehicle. Con-
straint (3) and (4) guarantee that each electric vehicle start and
return at the depot. Constraint (5) guarantees that a single vehi-
cle visits each customer, and that a single vehicle departs from its
customer. Constraint (6) and (7) guarantee that the value is non-
negative and does not exceed the vehicle’s capacity, load upon
arrival at any node, including the depot, ensuring that all cus-
tomer needs are satisfied. Constraint (8) guarantees that an EV
is fully charged before leaving the depot and the recharging sta-
tion. Constraint (9) ensures that the battery charge level at any
node during the route must always be within the battery’s capac-
ity limit. Constraint (10) and (11) ensure that the battery level is
not zero and determined by the battery consumption and the ve-
hicle’s travel. Constraint (12)-(14) guarantee the time windows.
Constraint (15) ensures a set of binary decision variables, where
the value is 1 if the node is visited and 0 otherwise. Constraint
(16) describes the battery level, time, and load capacity is non-
negative.

JJoM | Jambura J. Math Volume 7 | Issue 1 | February 2025



A. Y. Aksyarafah and N. A. Kurdhi – Optimized Approach to Electric Vehicle Routing Problem with Time Windows … 103

2.2. Grasshopper Optimization Algorithm
The GOA algorithm is a population-based method that

mimics the social behavior and hunting methods of grasshop-
pers, involving each grasshopper as a solution in the popula-
tion, influenced by social interaction, wind advection, and gravity
force [16]. The mathematical model used to calculate the posi-
tion Xi of each solution:

Xi = Si +Gi +Ai (17)

where Ai stands for air advection, Gi for the solution’s gravita-
tional pull, and Si for the social interaction between the solution
and the other grasshoppers. The position of each solution after
random behavior is added is represented by the equation below:

Xi = r1Si + r2Gi + r3Ai (18)

where r1, r2, and r3 are random numbers in [0, 1]. Let’s now
have a look at the model of each force used in eq. (17). The force
of social interaction Si, the equation below represents the social
interaction between the solution and the other grasshoppers:

Si =

N∑
j=1

s (dij) d̂ij , where i ̸= j. (19)

s = fe−
r
l − e−r (20)

Where dij is the distance between the i − th and the j − th

grasshopper, calculated as dij = |xj − xi|, and d̂ij = xj−xi

dij
rep-

resents the unit vector. In addition, s represents the strength
of two social forces (repulsion and attraction between grasshop-
pers), where l is the attractive length scale and f is the intensity
of attraction. In fact, these cofficients l and f have a great impact
in the social behavior of grasshoppers. the second force, which is
the force of gravity. The equation below shows how to calculate
the force of gravity Gi:

Gi = −gêg (21)

where −g represents the gravitational constant and êg is unit
vector toward center of earth. The movements of nymph and
adulthood grasshoppers are correlated with the wind direc-
tion Ai. The equation below shows how to compute Ai :

Ai = uêw (22)

where u represents the drift constant and êw is the unit vector in
the wind direction.

Xi =

N∑
j=1

s (|xj − xi|)
xj − xi

dij
− gêg + uêw (23)

In order to solve optimization issues and prevent grasshoppers
from quickly reaching their comfort zone and the swarm from
failing to converge to the target location (global optimum), we’ll
make some modifications in eq. (23):

Xd
i = c

 N∑
j=1

c
UBd − LBd

2
s
(∣∣∣xj

d − xd
i

∣∣∣) xj − xi

dij

 (24)

+ Best Solution,

where G = 0, A is the best solution in the d − th dimen-
sion, and UBd and LBd are the upper and lower bounds in
the d − th dimension, respectively. The parameter c represents
the decreasing coefficient, and it is in charge of decreasing the
comfort zone, repulsion zone, and attraction zone. In order to
balance the exploration and the exploitation phases using the
grasshopper approach, the coefficient c decreases according to
the number of iterations. Here’s the model for c:

c = cmax − iter
cmax−cmin

Maxiter
(25)

where cmax and cmin are the maximum and minimum values
of c respectively, iter is the current iteration, and Maxiter is
the maximum number of iterations.

3. Results and Discussion
The study utilized Solomon benchmark problem set [18].

The dataset is still designed for conventional vehicles as it lacks
electric charging data. To adapt it for electric vehicles, a number
of charging stations were randomly selected for this experiment.
Represented by x ∈ Xc and y ∈ Yc, where Xc and Yc corre-
spond to the range of customer coordinates X and Y, respectively.
We modified three specific sets of these benchmark instances for
the EVRPTW. Solomon’s benchmarks for clustered data types (C
types) compared to randomly distributed data types (R types) and
both (RC types). These categories include data on the number
and capacity of vehicles as well as detailed information regard-
ing each customer’s location, demand, time window, and service
time. Each type uses type series 101, 102, 201, 202 and includes
one depot, and and 3 charging stations. The study compares the
effectiveness of the GOA method for solving EVRPTW with 25
customers and 50 customers. The parameters are using the value
of cmin = 0.00004 and cmax = 2. The upper limit dimension
(UBd) = 5, and the lower limit dimension (LBd) = −5, while
for many grasshoppers there are 500 and Maxiter to 100. The
experimental results for 25 customers across two datasets from
each data category are presented in Table 2. The table shows the
number of vehicles (NV) and total distance traveled. Similarly, the
experimental results for 50 customers across two datasets from
each data category are summarized in Table 3. The results show
that the GOA is more efficient in terms of vehicle requirements
and total distance traveled. These findings offer insight into the
GOA’s performance across different problem sets and customer
sizes.

The GOA algorithm shows competitive performance in
terms of vehicle utilisation, with results equal to or less than the
most well-known Solomon solution. However, in EVRPTW, the
total distance travelled is longer due to the presence of recharg-
ing stations. GOA produces solutions close to Solomon’s for cer-
tain types of random data, but is more difficult for scenarios in-
volving 50 customers. It can be seen in Table 3 that the total dis-
tance for 50 customers is very long and the process is lengthy.
This algorithm is more suitable for small-scale data problems, es-
pecially for clustered data types. Further analysis of the perfor-
mance across larger data sets may provide insight into the po-
tential improvements and adaptability of GOA to different data
distributions.
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Table 2. Experimental result for 25 customers

No Problem
GOA

NV Distance
1 C101 3 321.40
2 C102 3 318.30
3 C201 1 336.80
4 C202 1 309.90
5 R101 2 656.50
6 R102 2 673.40
7 R201 1 889.70
8 R202 1 743.50
9 RC101 3 511.90
10 RC102 3 638.40
11 RC201 1 1159.70
12 RC202 1 986.20

Table 3. Experimental result for 50 customers

No Problem
GOA

NV Distance
1 C101 5 611,4
2 C102 5 539,5
3 C201 2 817,5
4 C202 2 624,3
5 R101 4 1490,9
6 R102 4 1468,1
7 R201 1 1843,7
8 R202 1 1750,5
9 RC101 6 2033,3
10 RC102 6 2003,3
11 RC201 1 3010,4
12 RC202 1 2549,1

For data type C101, the solution produces a route with
NV = 3 and a total distance of 321.40. The C101 route vis-
its one charging station (CS) for route 1 and 2. The route
details for 25 customers in the C101 data type are as follows:
R1 = [Depot, 20, 5, 3, 25, 7, 8, 10, 11, 9, CS2, 6, 23, 21,

Depot]
R2 = [Depot, 24, 18, 19, 15, 16, 12, 4, CS2, 2, 1, Depot]
R3 = [Depot, 13, 17, 14, 22, Depot]

For data type R101, the solution produces a route that has
NV = 2 and the total distance is 656.50. The R101 visit all the
charging station it makes the total distance larger. The route
details for 25 customers in the R101 data type are as follows:
R1 = [Depot, 14, 5, 2, CS3, 15, 21, 23, 16, CS3, 18, 8, 22,

CS3, 6, 17, 13, 1, Depot]
R2 = [Depot, 12, 11, 19, 7, 9, CS2, 3, 10, 20, 4, CS1, 24, 25,

Depot]
In the application of EVRPTW using GOA, different results

were obtained for two data types: C101 and R101. For the C101
data type, the solution produced a route with 3 vehicles and a
total distance of 321.40. In this route, only Route 1 and Route
2 visit a charging station (CS2), while Route 3 does not require
recharging. For the R101 data type, the solution uses 2 vehicles
but results in amuch larger total distance of 656.50. This increase
in distance is due to the frequent visits to charging stations (CS1,

CS2, and CS3). This contrast highlights the impact of customer
distribution and charging station locations on EV route efficiency.
Fewer vehicles, as in R101, increase total distance due to frequent
recharging. Optimizing charging station placement can enhance
efficiency.

The results were obtained for the C101 and R101 data types
with 50 customers. For the C101 data type, the solution uses 5
vehicles, which is the same as in the 50-customer dataset, with a
total distance of 611.40. All routes visit charging stations, ensur-
ing that the vehicles meet their battery constraints while cover-
ing the necessary customers. The route breakdown is as follows:
R1 = [Depot, 8, 27, 19, 15, 16, 9, CS2, 6, 36, 2, CS1, Depot]
R2 = [Depot, 20, 32, 3, CS1, 33, 31, 40, 44, 45, 39, CS3, 48,

50, 47, Depot]
R3 = [Depot, 43, 42, 41, 18, 35, CS3, 10, 29, 37, 46, CS3,

26, 23, 34, 49, Depot]
R4 = [Depot, 5, 13, 17, 11, 38, CS3, 28, 14, 12, 4, 51, 1, 21,

Depot]
R5 = [Depot, 24, 25, 7, 30, 22, Depot]

This solution demonstrates that, despite visiting all charg-
ing stations, the overall distance remains controlled. The use
of five vehicles allows for a balanced distribution of customers
across the routes, with strategic visits to the charging stations to
maintain vehicle energy levels.

For the R101 data type, the solution involves 4 vehicles
and a significantly larger total distance of 1490,9. The increased
distance can be attributed to the frequent visits to multiple
charging stations, which are necessary to meet the energy
demands over the longer routes. The routes are as follows:
R1 = [Depot, 42, 14, 45, 2, CS3, 47, 11, 19, CS3, 7, 49, 46,

10, CS2, 43, 48, CS3, Depot]
R2 = [Depot, 27, 33, 36, CS3, 31, 21, 12, 40, CS3, 18, 9, 34,

20, CS2, 26, 37, 32, CS2, 17, Depot]
R3 = [Depot, 5, 28, 15, CS3, 23, 44, 16, 38, CS3, 41, 22, 6,

50, 51, 35, 24, 1, 25, 51, Depot]
R4 = [Depot, 39, 29, 30, CS2, 8, 3, 4, CS1, 13, Depot]

The higher total distance in R101 is due to the longer travel
distances between customers and the necessity to frequently
recharge the vehicles. The 4-vehicle solution, while minimizing
the number of vehicles, leads to extended routes with multiple
charging stops, particularly in R1 and R3, where vehicles return
to charging stations several times. In both C101 and R101, the
GOA based solution shows that frequent visits to charging sta-
tions significantly impact the total distance. For C101, the use
of 5 vehicles helps distribute the customer demand effectively,
limiting the total distance. In contrast, for R101, the use of 4
vehicles results in longer routes and more frequent recharging,
thus inflating the total distance. These results suggest that opti-
mizing the number of vehicles and strategically planning charg-
ing station visits are crucial in minimizing the total distance in
EVRPTW problems.

4. Conclusion

The experimental results highlight the effectiveness and
limitations of the GOA in solving the EVRPTW. GOA shows com-
petitive vehicle utilization like Solomon’s benchmarks, but its
total distance minimization depends heavily on customer and
charging station distribution. Increasing the number of cus-
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tomers increases the route complexity and total distance trav-
eled. At 25 customers, types C, R, RC are quite efficient although
R and RC result in longer distances due to high recharge fre-
quency. At 50 customers, the total distance increases dramati-
cally, especially for the R and RC types. This shows that GOA is
suitable for small to medium scale problems, but faces scalabil-
ity challenges on larger datasets. To improve GOA for large-scale
EVRPTW, future research should develop hybrid metaheuristics
that integrate adaptive recharging, better vehicle allocation, and
dynamic charging station placement. These adjustments could
boost efficiency and balance minimizing vehicles with reducing
travel distance.
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