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Parameter Estimation of Mixed Geographically Weighted Bivariate
Zero-Inflated Negative Binomial Regression Model

Mawadah Putri Islamiati1,∗, Purhadi1, Wibawati1

1Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

ABSTRACT. The Bivariate Zero-Inflated Negative Binomial (BZINBR) regression model is commonly used to analyze
two correlated count response variables characterized by overdispersion and excess zeros. To account for spatial
heterogeneity in predictor effects, the BZINBR model has been extended into the Geographically Weighted BZINBR
(GWBZINBR) model. However, predictor effects are not always entirely local; certain global effects may persist across
regions. This study proposes the Mixed Geographically Weighted BZINBR (MGWBZINBR) model, which integrates
both global and local parameter structures for modeling spatially correlated bivariate count data. The theoretical
framework of the MGWBZINBR model is developed, including the derivation of the log-likelihood function, parameter
estimation procedures, and hypothesis testing. Parameter estimation is conducted using the Maximum Likelihood
Estimation (MLE) method via the iterative Berndt–Hall–Hall–Hausman (BHHH) algorithm. Given the complexity
of the likelihood equations and the absence of closed-form solutions, numerical optimization is employed to ensure
convergence and stability. The MGWBZINBR model offers a flexible and robust framework for analyzing spatial
count data with excess zeros and complex dependency structures. It can be applied in various fields, including public
health, ecology, and transportation analysis, to understand the influence of both local and global predictors on spatial
phenomena. As the focus of this paper is methodological, empirical and simulation-based applications are intentionally
excluded.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJoM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction

Poisson regression is widely applied in the analysis of count
data, particularly in fields such as public health, demography, and
environmental research. This regression method relies on the
assumption of equidispersion, meaning that the variance of the
response variable equals its mean [1]. However, this assumption
is frequently violated in practice due to overdispersion and the
presence of a substantial number of excess zeros, rendering the
standard Poisson regression model inadequate [2]. To address
these limitations, several alternativemodels have been proposed.

One such model is the Zero-Inflated Poisson (ZIP), designed
to handle datasets with a high proportion of zeros. It combines a
Poisson distribution for non-zero counts with a separate process
modeling the probability of structural zeros [3]. Another model,
the Negative Binomial, extends Poisson regression by introducing
a dispersion parameter, providing greater flexibility in handling
overdispersion [4]. A combination of these two models leads to
the Zero-Inflated Negative Binomial (ZINB), which effectively ad-
dresses both overdispersion and excess zeros [5].

The effectiveness of these models has been confirmed in
prior studies. For instance, Saputro and Qudratullah [6] ap-
plied the Maximum Likelihood Estimation (MLE) method and
the Expectation Maximization (EM) algorithm to model ZINBR.
In another study, Azwarini [7] estimated parameters and per-
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formed hypothesis testing in the BZINBR model, showing that
all predictors significantly influenced the outcomes. To incor-
porate spatial heterogeneity in predictor effects, the Geographi-
cally Weighted Bivariate Zero-Inflated Negative Binomial Regres-
sion (GWBZINBR) model was introduced, allowing parameter es-
timates to vary locally across spatial units [8]. However, in many
cases, not all predictor effects are strictly local. Some predictors
may exhibit consistent global effects.

Enforcing complete locality in all predictor effects may
reduce model efficiency and interpretability [9]. To overcome
this limitation, the Mixed Geographically Weighted Regression
(MGWR) model was proposed, combining both global and local
coefficients within a single framework [10]. This mixed approach
has also been extended to count models with overdispersion and
excess zeros, such as the Geographically Weighted Negative Bi-
nomial Regression (GWNBR) [11] and Geographically Weighted
Bivariate Zero-Inflated Poisson Inverse Gaussian Regression (GW-
BZIPIGR) [12].

This study aims to develop the theoretical foundation of
the Mixed Geographically Weighted Bivariate Zero-Inflated Neg-
ative Binomial Regression (MGWBZINBR) model. It includes the
derivation of its log-likelihood function, parameter estimation us-
ing the MLE method, and hypothesis testing for both local and
global components. Due to the absence of closed-form solutions,
parameter estimation is implemented using the iterative Berndt–
Hall–Hall–Hausman (BHHH) algorithm, known for its computa-
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tional efficiency and numerical stability in complex spatial data
analysis.

This paper is presented as a methodological contribution,
emphasizing the mathematical formulation, estimation proce-
dures, and structural properties of the MGWBZINBR model. Em-
pirical validation and simulation studies are acknowledged as
valuable future directions but are deliberately excluded from the
current study.

2. Model
2.1. Bivariate Zero-Inflated Negative Binomial Regression

The Bivariate Zero-Inflated Negative Binomial (BZINB) dis-
tribution is an extension of the ZINB distribution for two depen-
dent random variables. BZINB is a mixed distribution combin-
ing Zero-Inflated and Negative Binomial distributions, capable of
addressing overdispersion when there are many zero values in
observed bivariate data [13].

Based on the response variable, BZINB distributions can be
classified into two main types, namely Type I and Type II. The
Type I BZINB model has a response variable that consists of a sin-
gle set of values (Y1 = 0, Y2 = 0) dan (Y1 ̸= 0, Y2 ̸= 0), while
the Type II BZINB regression model has a response variable com-
prising multiple combinations of values [14].

Assume that there are correlated random variables
Y1 and Y2, which follow a bivariate zero-inflated negative bino-
mial distribution. For each observation i = 1, 2, · · · , n the pair:

(Y1, Y2) ∼ BZINB (λ1, λ2, p1, p2, τ) (1)

where:
λki : mean of the negative binomial distribution for re-

sponse k,
pki : zero-inflation probability for response k,
τ : dispersion parameter.

Each observation iis associated with a covariate vector
xi =

[
1 x1i x2i · · · xhi

]T
1×(1+q)

. Where h is the
number of predictor variables, and the first element represents
the intercept term. For each response variable k = 1, 2 the re-
gression coefficients are denoted by βk for the count component
and δk for the zero-inflation component. Let qi denote the expo-
sure variable for observation i.

The BZINB regression model is divided into the Bivariate
Negative Binomial model and the Zero-Inflated model, which are
formulated as follows:
• Bivariate Negative Binomial Model (λki) :

λki = qkiexp
(
xT
i k

)
; k = 1, 2. (2)

• Zero-Inflated Model :

log it (pki) = ln
(

pki
1− pki

)
= xT

i dk ; k= 1, 2,

pki =
exp

(
xT
i dk

)
1 + exp

(
xT
i dk

)
,

and

1−pki =
1

1 + exp
(
xT
i dk

) .

(3)

Parameter estimation for the BZINBR model is obtained us-
ing the Maximum Likelihood Estimation (MLE) approach.

2.2. Geographically Weighted Bivariate Zero-Inflated Negative
Binomial Regression

The Geographically Weighted Bivariate Zero-Inflated Neg-
ative Binomial Regression (GWBZINBR) model is an extension of
the BZINBR model that incorporates spatial or geographical char-
acteristics to produce locally varying parameter estimates. This
enhancement is achieved by assigning each observation a loca-
tion coordinate, represented as a spatial weight matrix (Wii∗),
based on latitude and longitude values.
The parameter estimation for the GWBZINBRmodel is conducted
using the Maximum Likelihood Estimation (MLE) method, imple-
mented via the Berndt–Hall–Hall–Hausman (BHHH) iterative al-
gorithm [8]. Suppose we have a vector of observations

(Y1i, Y2i) ∼ BZINB (1 (ui) , 2 (ui) , d1 (ui) , d2 (ui) , t)

for i = 1, 2, · · · , n.
(4)

Then the GWBZINBR model is:

λki = qkiexp
(
xT
i k (ui)

)
; k = 1, 2; i = 1, 2, · · · , n,

pki =
exp

(
xT
i dk (ui)

)
1 + exp

(
xT
i dk (ui)

) ,

1− pki =
1

1 + exp
(
xT
i dk (ui)

) .
(5)

The local log-likelihood function is then optimized using numer-
ical routines, and spatial weights (Wii∗) are used to ensure local
estimation at each location (ui, vi).

2.3. Mixed Weighted Bivariate Zero-Inflated Negative Binomial
Regression (MGWBZINBR)

The MGWBZINBR framework is an advancement of the GW-
BZINBR model, achieved by incorporating spatial heterogene-
ity and employing a mixed coefficient approach. This model-
ing approach integrates local and global parameter estimation to
capture spatially heterogeneous relationships in bivariate count
data, as outlined by [15]. It is particularly suitable for analyz-
ing bivariate count data characterized by overdispersion, excess
zeros, and spatially varying associations between covariates and
outcomes. The typical representation of theMixed Bivariate Geo-
graphically Weighted Regression framework which incorporates
an exposure variable (qi) is employed to model the relationship
among covariates and response variables, is given as follows:

E(Yki) = µki = qi exp
(
x∗Ti β∗

k(ui) + x∗∗Ti γk

)
,

k = 1, 2; i = 1, 2, . . . , n.
(6)

For local predictors, the coefficient and covariate matrices for
response k = 1, 2 are:

β∗
k(ui) =

[
β∗
0,k(ui), β

∗
1,k(ui), . . . , β

∗
q,k(ui)

]T
,

x∗i =
[
1, X1i, X2i, . . . , Xqi

]T
.

(7)

For global predictors:

γk =
[
γ(q+1),k, γ(q+2),k, . . . , γp,k

]T
,

x∗∗i =
[
X(q+1),i, X(q+2),i, . . . , Xp,i

]T
.

(8)

Assume that (Y1i, Y2i) follows a BZINB distribution parameter-
ized by β1 (ui) ,β2 (ui) , δ1 (ui) , δ2 (ui) , τ Under this assump-
tion, the associated joint probability function can be written as:
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• Bivariate Negative Binomial Model (λki) :

λki = qki exp
(
xTi βk(ui) + x∗∗Ti γk

)
;

k = 1, 2; i = 1, 2, . . . , n.
(9)

• Zero-Inflated Model :

log it(pki) = ln
(

pki
1− pki

)
,

pki =
exp

(
xTi δk(ui) + x∗∗Ti γk

)
1 + exp

(
xTi δk(ui) + x∗∗Ti γk

) ,
1− pki =

1

1 + exp
(
xTi δk(ui) + x∗∗Ti γk

) ;
k = 1, 2; i = 1, 2, . . . , n. (10)

The corresponding joint probability distribution can be ex-
pressed as:

P (Y1i = y1i, Y2i = y2i) =


A1, (y1i = 0, y2i = 0)
B1, (y1i = 0, y2i > 0)
C1, (y1i > 0, y2i = 0)
D1, (y1i > 0, y2i > 0)

. (11)

(i) For Y1i = 0, Y2i = 0,

P (Y1i = 0, Y2i = 0) = p1i · p2i + p1i (1− p2i)

(
1

1 + τλ2i

) 1
τ

+ p2i (1− p1i)

(
1

1 + τλ1i

) 1
τ

+ (1− p1i) (1− p2i)

(
1

1 + τ (λ1i + λ2i)

) 1
τ

.

(12)

(ii) For Y1i > 0, Y2i = 0 or Y1i = 1, 2, · · · ;Y2i = 0,

P (Y1i > 0, Y2i = 0) = p2i(1− p1i)
Γ
(
y1i +

1
τ

)
Γ
(
1
τ

)
y1i!

(
1

1 + τλ1i

) 1
τ

(
τλ1i

1 + τλ1i

)y1i

+ (1− p1i)(1− p2i)
Γ
(
y1i +

1
τ

)
Γ
(
1
τ

)
y1i!

×
(

1

1 + τ(λ1i + λ2i)

) 1
τ
(

τ(λ1i + λ2i)

1 + τ(λ1i + λ2i)

)y1i

.

(13)

(iii) For Y1i = 1, 2, · · · ;Y2i = 0 or Y1i > 0, Y2i = 0,

P (Y1i = 0, Y2i > 0) = p1i(1− p2i)
Γ
(
y2i +

1
τ

)
Γ
(
1
τ

)
y2i!

(
1

1 + τλ2i

) 1
τ

(
τλ2i

1 + τλ2i

)y2i

+ (1− p1i)(1− p2i)
Γ
(
y2i +

1
τ

)
Γ
(
1
τ

)
y2i!

×
(

1

1 + τ(λ1i + λ2i)

) 1
τ
(

τ(λ1i + λ2i)

1 + τ(λ1i + λ2i)

)y2i

.

(14)

(iv) For Y1i > 0, Y2i > 0 or Y1i = 1, 2, · · · ;Y2i = 1, 2, · · · ,

P (Y1i > 0, Y2i > 0) = (1− p1i)(1− p2i)
Γ
(
y1i + y2i +

1
τ

)
Γ
(
1
τ

)
y1i! y2i!

×
(

1

1 + τ(λ1i + λ2i)

) 1
τ
(

τ(λ1i + λ2i)

1 + τ(λ1i + λ2i)

)y1i+y2i

.

(15)

3. Results and Discussion
The parameter estimation of the MGWBZINBR model pro-

duces both global and local parameter estimates. This estimation
is carried out using MLE method. Let

(Y1i, Y2i) ∼ BZINB (β1 (ui) ,β2 (ui) , δ1 (ui) , δ2 (ui) , τ) ;

i = 1, 2, · · · , n.

Then the MGWBZINBR model is defined as follows:
• Model for the Bivariate Negative Binomial Component:

λki = qki exp
(
xTi βk(ui) + x∗∗Ti γk

)
;

k = 1, 2; i = 1, 2, . . . , n.

• Model for the Zero-Inflated Component:

log it(pki) = ln
(

pki
1− pki

)
,

pki =
exp

(
xTi δk(ui) + x∗∗Ti γk

)
1 + exp

(
xTi δk(ui) + x∗∗Ti γk

) ,
1− pki =

1

1 + exp
(
xTi δk(ui) + x∗∗Ti γk

) ;
k = 1, 2; i = 1, 2, . . . , n.

TheMGWBZINBRmodel’s joint probability structure can be
expressed as follows:

P (Y1i = y1i, Y2i = y2i) =



A1, (y1i = 0, y2i = 0)

B1, (y1i = 0, y2i > 0)

C1, (y1i > 0, y2i = 0)

D1, (y1i > 0, y2i > 0)

.

The forms ofAi, Bi, Ci and Di are explained in detail in eq. (12),
(13), (14), and (15). Meanwhile, the parameters to be estimated
in the MGWBZINBR model can be represented in matrix form as
follows:

θi∗,MGWBZINBR = [β∗
1(ui∗) β∗

2(ui∗) δ∗1(ui∗) δ∗2(ui∗) γ1 γ2 τ ]
T
.

(16)
The probability function employed in this model is formulated as
follows:

P (y1i, y2i | θi∗,MGWBZINBR) = P (y1i, y2i;β
∗
1(ui),β

∗
2(ui), δ

∗
1(ui),

δ∗2(ui),γ1,γ2, τ)

=
(
(Ai)

1−bi−ci−di(Bi)
bi(Ci)

ci(Di)
di
)
.

The joint probability functions are transformed into the form of
a natural logarithm (ln) probability function to estimate the pa-
rameters for the i-th observation, as formulated below:

lnP (y1i, y2i | θi∗,MGWBZINBR) = (1− bi − ci − di) lnAi
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+ (bi) lnBi + (ci) lnCi + (di) lnDi.

These derivatives, with respect to each parameter, are deter-
mined under four distinct data scenarios, namely:

(Y1i = 0, Y2i = 0), (Y1i > 0, Y2i = 0) or Y1i = 1, 2, . . . ;Y2i = 0,

(Y1i = 0, Y2i > 0) or Y1i = 0;Y2i = 1, 2, . . . and

(Y1i > 0, Y2i > 0) or Y1i = 1, 2, . . . ;Y2i = 1, 2, . . . .

The first-order derivative with respect to parameter
(β∗

1 (ui) ,β
∗
2 (ui) , δ

∗
1 (ui) , δ

∗
2 (ui) ,γ1,γ2, τ) for one of

the conditions, namely the condition (Y1i = 0, Y2i = 0) is given
by:

ZL1i = exp
(
x∗Ti δ∗1(u

∗
i ) + x∗∗Ti γ1

)
,

ZL2i = exp
(
x∗Ti δ∗2(u

∗
i ) + x∗∗Ti γ2

)
.

• The derivative with respect to (β∗
1 (ui)) under the condition

(Y1i = 0, Y2i = 0):

∂ lnP (θi∗,MGWBZINBR)

∂β1
∗ (ui∗)

=
NP1β1

DP1β1

,

where,

NP1β1 = xTi∗ · τ2 · ZI2i · λ1i(1 + τλ1i)
τ−1

+ xTi∗ · τ2 · λ1i (1 + τ(λ1i + λ2i))
τ−1

,

DP1β1 = ZI1i · ZI2i + ZI1i(1 + τλ2i)
τ + ZI2i(1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative with respect to (β∗
2 (ui)) under the condition

(Y1i = 0, Y2i = 0):

∂ lnP (θi∗,MGWBZINBR)

∂β∗
2 (ui∗)

=
NP1β2

DP1β2

,

where,

NP1β2 = xT
i∗ · τ2 · ZI1i · λ2i(1 + τλ2i)

τ−1

+ xT
i∗ · τ2 · λ2i (1 + τ(λ1i + λ2i))

τ−1
,

DP1β2 = ZI1i · ZI2i + ZI1i(1 + τλ2i)
τ + ZI2i(1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative with respect to (δ∗1 (ui)) under the condition
(Y1i = 0, Y2i = 0):

∂ lnP (θi∗,MGWBZINBR)

∂δ∗1 (ui∗)
=

NP1δ1

DP1δ1

,

where,

NP1δ1 = −xT
i∗ · ZI1i (1 + τ(ZI2i)) + xT

i∗ · ZI1i · ZI2i

+ xT
i∗ · ZI1i (1 + τλ2i)

τ
,

DP1δ1 = (1 + τ(ZI1i)) (1 + τ(ZI2i)) + ZI1i · ZI2i

+ ZI1i (1 + τλ2i)
τ
+ ZI2i (1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative with respect to (δ∗2 (ui)) under the condition
(Y1i = 0, Y2i = 0):

∂ lnP (θi∗,MGWBZINBR)

∂δ∗2 (ui∗)
=

NP1δ2

DP1δ2

,

where,

NP1δ2 = −xT
i∗ · ZI2i (1 + τ(ZI1i)) + xT

i∗ · ZI1i · ZI2i

+ xT
i∗ · ZI2i (1 + τλ2i)

τ
,

DP1δ2 = (1 + τ(ZI1i)) (1 + τ(ZI2i)) + ZI1i · ZI2i

+ ZI1i (1 + τλ2i)
τ
+ ZI2i (1 + τλ1i))

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative with respect to (γ1) under the condition
(Y1i = 0, Y2i = 0):

∂ lnP (θi∗,MGWBZINBR)

∂γ1

=
NP1γ1

DP1γ1

,

where,

NP1γ1 = −xT
i∗ · ZI1i (1 + τ(ZI2i)) + xT

i∗ · ZI1i · ZI2i

+ xT
i∗ · ZI1i (1 + τλ2i)

τ
+ xT

i∗ · ZI2i (1 + τλ1i)
τ

+ xT
i∗ (1 + τ(λ1i + λ2i))

τ
,

DP1γ1 = (1 + τ(ZI1i)) (1 + τ(ZI2i)) + ZI1i · ZI2i

+ ZI1i (1 + τλ2i)
τ
+ ZI2i (1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative with respect to (γ2) under the condition
(Y1i = 0, Y2i = 0):

∂ lnP (θi∗,MGWBZINBR)

∂γ2

=
NP1γ2

DP1γ2

,

where,

NP1γ2 = −xT
i∗ · ZI2i (1 + τ(ZI1i)) + xT

i∗ · ZI1i · ZI2i

+ xT
i∗ · τ2 · ZI1i · λ2i (1 + τλ2i)

τ−1

+ xT
i∗ · τ2 · λ2i (1 + τ(λ1i + λ2i))

τ−1
,

DP1γ2 = (1 + τ(ZI1i)) (1 + τ(ZI2i)) + ZI1i · ZI2i

+ ZI1i (1 + τλ2i)
τ
+ (1 + τ(λ1i + λ2i))

τ
.

In the MGWBZINBR model, the dispersion parameter t is
set based on the estimate derived from the BZINBR model. To ef-
ficiently estimate the population parameters, this study applies a
likelihood-based approach that seeks to optimize the probability
of observing the given data under a known distribution:

L (θi∗,MGWBZINBR) =

n∏
i=1

P (y1i, y2i |θi∗,MGWBZINBR)

=

n∏
i=1

P (y1i, y2i;β
∗
1(ui),β

∗
2(ui), δ

∗
1(ui),

δ∗2(ui),γ1,γ2, τ)

=

n∏
i=1

(
(Ai)

1−bi−ci−di(Bi)
bi(Ci)

ci(Di)
di
)wi∗
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= (L1 (θMGWBZINBR)) (L2 (θMGWBZINBR))

(L3 (θMGWBZINBR)) (L4 (θMGWBZINBR)) .

To estimate the likelihood for the i-th observation, the func-
tion is first transformed into its natural logarithmic (ln) form, con-
sidering the spatial weight wii∗ as follows:

lnL (θi∗,MGWBZINBR) =

n∑
i=1

wii∗ ln (P (y1i, y2i|θi∗,MGWBZINBR))

=

n∑
i=1

wii∗(1− bi − ci − di) lnAi +

n∑
i=1

wii∗(bi) lnBi

+

n∑
i=1

wii∗(ci) lnCi +

n∑
i=1

wii∗(di) lnDi

= ln (L1 (θMGWBZINBR)) + ln (L2 (θMGWBZINBR))

+ ln (L3 (θMGWBZINBR)) + ln (L4 (θMGWBZINBR)) .

Subsequently, the partial derivatives of the log-likelihood
function are computed with respect to each parameter:

lnL (θMGWBZINBR) = lnL (β∗
1(ui),β

∗
2(ui), δ

∗
1(ui), δ

∗
2(ui),

γ1,γ2, τ) .

with respect to each parameter and then equate them to zero in
order to obtain the parameter estimates:

∂ lnL (θi∗,MGWBZINBR)

∂θi∗,MGWBZINBR
=

∂ ln (L1 (θi∗,MGWBZINBR))

∂θi∗,MGWBZINBR

+
∂ ln (L2 (θi∗,MGWBZINBR))

∂θi∗,MGWBZINBR

+
∂ ln (L3 (θi∗,MGWBZINBR))

∂θi∗,MGWBZINBR

+
∂ ln (L4 (θi∗,MGWBZINBR))

∂θi∗,MGWBZINBR
.

The first-order derivatives of the log-likelihood function for
the MGWBZINBR model are obtained using the following formu-
lation, the following expression is employed:

lnL (θMGWBZINBR) = lnL (β∗
1(ui),β

∗
2(ui), δ

∗
1(ui), δ

∗
2(ui),

γ1,γ2, τ) .

For one of the conditions, namely the condition
(Y1i = 0, Y2i = 0) is given by:

g (θi∗,MGWBZINBR) =



∂ lnL(θi∗,MGWBZINBR)
∂β∗

1(ui∗ )

∂ lnL(θi∗,MGWBZINBR)
∂β∗

2(ui∗ )

∂ lnL(θi∗,MGWBZINBR)
∂δ∗

1(ui∗ )

∂ lnL(θi∗,MGWBZINBR)
∂δ∗

2(ui∗ )

∂ lnL(θi∗,MGWBZINBR)
∂γ1

∂ lnL(θi∗,MGWBZINBR)
∂γ2

∂ lnL(θi∗,MGWBZINBR)
∂τ


(17)

=



∑n
i=1 wii∗

∂ lnP (y1i,y2i | θi∗,MGWBZINBR)
∂β∗

1(ui∗ )∑n
i=1 wii∗

∂ lnP (y1i,y2i | θi∗,MGWBZINBR)
∂β∗

2(ui∗ )∑n
i=1 wii∗

∂ lnP (y1i,y2i | θi∗,MGWBZINBR)
∂δ∗

1(ui∗ )∑n
i=1 wii∗

∂ lnP (y1i,y2i | θi∗,MGWBZINBR)
∂δ∗

2(ui∗ )∑n
i=1 wii∗

∂ lnP (y1i,y2i | θi∗,MGWBZINBR)
∂γ1∑n

i=1 wii∗
∂ lnP (y1i,y2i | θi∗,MGWBZINBR)

∂γ2∑n
i=1 wii∗

∂ lnP (y1i,y2i | θi∗,MGWBZINBR)
∂τ


.

• The derivative L (θi∗,MGWBZINBR) with respect to
(β∗

1 (ui)) under the condition (Y1i = 0, Y2i = 0):

∂L (θi∗,MGWBZINBR)

∂β∗
2(ui∗)

=

n∑
i=1

(
NL1β1

DL1β1

)
wii∗ ,

where,

NL1β1 = xT
i∗ · τ2 · ZI2i · λ1i(1 + τλ1i)

τ−1

+ xT
i∗ · τ2 · λ1i (1 + τ(λ1i + λ2i))

τ−1
,

DL1β1 = ZI1i · ZI2i + ZI1i(1 + τλ2i)
τ + ZI2i(1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative L (θi∗,MGWBZINBR) with respect to
(β∗

2 (ui)) under the condition (Y1i = 0, Y2i = 0):

∂L (θi∗,MGWBZINBR)

∂β∗
2(ui∗)

=

n∑
i=1

(
NL1β2

DL1β2

)
wii∗ ,

where,

NL1β2 = xT
i∗ · τ2 · ZI1i · λ2i(1 + τλ2i)

τ−1

+ xT
i∗ · τ2 · λ2i (1 + τ(λ1i + λ2i))

τ−1
,

DL1β2 = ZI1i · ZI2i + ZI1i(1 + τλ2i)
τ + ZI2i(1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative L (θi∗,MGWBZINBR) with respect to
(δ∗1 (ui)) under the condition (Y1i = 0, Y2i = 0):

∂L (θi∗,MGWBZINBR)

∂δ∗1(ui∗)
=

n∑
i=1

(
NL1δ1

DL1δ1

)
wii∗ ,

where,

NL1δ1 = −xT
i∗ · ZI1i (1 + τ(ZI2i)) + xT

i∗ · ZI1i · ZI2i

+ xT
i∗ · ZI1i (1 + τλ2i)

τ
,

DL1δ1 = (1 + τ(ZI1i)) (1 + τ(ZI2i)) + ZI1i · ZI2i

+ ZI1i (1 + τλ2i)
τ
+ ZI2i (1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative L (θi∗,MGWBZINBR) with respect to
(δ∗2 (ui)) under the condition (Y1i = 0, Y2i = 0):

∂L (θi∗,MGWBZINBR)

∂δ∗2(ui∗)
=

n∑
i=1

(
NL1δ2

DL1δ2

)
wii∗ ,
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where,

NL1δ2 = −xT
i∗ · ZI2i (1 + τ(ZI1i)) + xT

i∗ · ZI1i · ZI2i

+ xT
i∗ · ZI2i (1 + τλ2i)

τ
,

DL1δ2 = (1 + τ(ZI1i)) (1 + τ(ZI2i)) + ZI1i · ZI2i

+ ZI1i (1 + τλ2i)
τ
+ ZI2i (1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative L (θi∗,MGWBZINBR) with respect to (γ1)
under the condition (Y1i = 0, Y2i = 0):

∂L (θi∗,MGWBZINBR)

∂γ1

=

n∑
i=1

(
NL1γ1

DL1γ1

)
wii∗ ,

where,

NL1γ1 = −xT
i∗ · ZI1i (1 + τ(ZI2i)) + xT

i∗ · ZI1i · ZI2i

+ xT
i∗ · ZI1i (1 + τλ2i)

τ
+ xT

i∗ (1 + τ(λ1i + λ2i))
τ
,

DL1γ1 = (1 + τ(ZI1i)) (1 + τ(ZI2i)) + ZI1i · ZI2i

+ ZI1i (1 + τλ2i)
τ
+ ZI2i (1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

• The derivative L (θi∗,MGWBZINBR) with respect to (γ2)
under the condition (Y1i = 0, Y2i = 0):

∂L (θi∗,MGWBZINBR)

∂γ2

=

n∑
i=1

(
NL1γ2

DL1γ2

)
wii∗ ,

where,

NL1γ2 = −xT
i∗ · ZI2i (1 + τ(ZI1i)) + xT

i∗ · ZI1i · ZI2i

+ xT
i∗ · τ2 · ZI1i · λ2i (1 + τλ2i)

τ−1

+ xT
i∗ · τ2 · λ2i (1 + τ(λ1i + λ2i))

τ−1
,

DL1γ2 = (1 + τ(ZI1i)) (1 + τ(ZI2i)) + ZI1i · ZI2i

+ ZI1i (1 + τλ2i)
τ
+ ZI2i (1 + τλ1i)

τ

+ (1 + τ(λ1i + λ2i))
τ
.

Summary of Derivation Structure. The derivation of the
score function is divided into two levels. First, partial derivatives
of the log-probability function are calculated for four data sce-
narios:
1. (Y1i = 0, Y2i = 0)
2. (Y1i > 0, Y2i = 0) or Y1i = 1, 2, ...;Y2i = 0
3. (Y1i = 0, Y2i > 0)or Y1i = 0 ;Y2i = 1, 2, ...
4. (Y1i > 0, Y2i > 0) or Y1i = 1, 2, ...;Y2i = 1, 2, ....

Each case contributes a specific component to the score
function. The complete gradient vector is then assembled and
used in the iterative BHHH algorithm to estimate the localized
parameter vector θi∗,MGWBZINBR.

The local estimation procedure of the MGWBZINBR model
is derived based on the partial derivatives of the log-likelihood
function for each spatial location. Figure 1 summarizes the iter-
ative steps performed using the BHHH algorithm.

As shown in Figure 1, the parameter vector is updated itera-
tively using the score information derived from the log-likelihood

Figure 1. Estimation procedure of the MGWBZINBR model
using the BHHH algorithm

function and the approximated Hessian matrix until the conver-
gence criterion is satisfied. The estimation procedure of the MG-
WBZINBR model is summarized in the following diagram to illus-
trate the overall structure, from case-based derivations to itera-
tive optimization.

Analyzing of the first-order derivatives of the MGWBZINBR
Type II model parameters under the four conditions, it is found
that the resulting expressions do not have closed-form solutions.
Consequently, the parameter estimates cannot be obtained ana-
lytically. Hence, numerical optimization is performed through
the iterative procedure developed by BHHH.

The steps involved in the BHHH iteration process are de-
scribed as follows : The first step begins by specifying the ini-
tial values of the parameter estimates at iteration m = 0. The
initial parameter vector for location (ui∗, vi∗) in the MGWBZ-
INBR model follows the same structure as defined previously in
eq. (16), consisting of both local and global parameter blocks.

In the second step, the gradient vector of the log-likelihood
function for the MGWBZINBR model is computed and follows the
structure outlined in the previous derivations.

The structure of the gradient vector g (θi∗,MGWBZINBR)
follows the arrangement of partial derivatives with respect
to each model parameter, as previously defined in eq. (17).
Each component is calculated as a weighted sum of in-
dividual gradient contributions from each observation, de-
noted by gi (θi∗,MGWBZINBR), multiplied by the spatial ker-
nel weight wii∗. These individual contributions are based
on the partial derivatives of the log-probability function
ln P (y1i, y2i |θi∗,MGWBZINBR ), and reflect the sensitivity of
the likelihood to changes in each parameter at observation iii.
This formulation ensures that the gradient computation accounts
for spatial heterogeneity across locations.

The third step is to construct the Hessian matrix as the neg-
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ative definite product of the gradient vectors, given by:

H
(
θ̂i∗,MGWBZINBR

)
= −

n∑
i=1

wii∗gi

(
θ̂i∗,MGWBZINBR

)
gi

(
θ̂i∗,MGWBZINBR

)T

.

The next step, involves substituting the current pa-

rameter values θ̂
(0)

i∗,MGWBZINBR into both the gradi-

ent vector g
(
θ̂i∗,MGWBZINBR

)
and the Hessian matrix

H
(
θ̂i∗,MGWBZINBR

)
. These updated values serve as the ba-

sis for computing the direction and magnitude of the parameter
adjustments.

The convergence tolerance is set as ε = 10−6, with a max-
imum iteration limit of t∗ = 10.000 A convergence tolerance of
10−6 is commonly recommended to obtain statistically optimal
estimates [16]. This value balances numerical precision and com-
putational efficiency: smaller thresholds may yield slightly more
accurate results at the cost of longer runtimes and potential in-
stability, while larger values may lead to premature convergence
and biased estimates.

The next step is to update the parameter values at itera-
tion m based on the previously calculated gradient and Hessian.
The update is performed using the BHHH iterative formula, by
subtracting the product of the inverse Hessian and the gradient
vector from the previous parameter values. This process is re-
peated iteratively until convergence is achieved:

θ̂
(m+1)

i∗,MGWBZINBR = θ̂
(m)

i∗,MGWBZINBR −H−1(
θ̂
(m)

i∗,MGWBZINBR

)
· g

(
θ̂
(m)

i∗,MGWBZINBR

)
.

Next, the updated parameter values are used to recalculate
the gradient vector, and the process continues by returning to
the initial step. The iteration will be terminated once the conver-
gence criterion is satisfied. Specifically, the stopping condition
is defined as:∥∥∥∥θ̂(m+1)

i∗,MGWBZINBR − θ̂
(m)

i∗,MGWBZINBR

∥∥∥∥ ≤ ε,

where e is a small positive constant close to zero. This criterion
ensures that the parameter estimates have stabilized across suc-
cessive iterations. After the iteration reaches convergence, the
final parameter estimates are then defined as:

θ̂i∗,MGWBZINBR = θ̂
(M)

i∗,MGWBZINBR,

where M indicates the final iteration at which convergence is
attained. This iterative process is applied individually at each
spatial location i = 1, 2, · · · , n allowing the model to generate
location-specific parameter estimates.

At the final stage, a covariance matrix is derived for each
location to quantify the variability of the estimated parameters.

This matrix is approximated using the inverse of the Hessian ma-
trix, as follows:

Covθ̂i∗,MGWBZINBR

n→∞
≃̂ − 1

(
θ̂i∗,MGWBZINBR

)
.

This covariance matrix provides a measure of the precision
of the estimated parameters and can be used for further infer-
ence, such as constructing confidence intervals or performing hy-
pothesis testing.

4. Conclusion
The parameter estimation of the Mixed Geographically

Weighted Bivariate Zero-Inflated Negative Binomial Regression
(MGWBZINBR) model is conducted using the Maximum Likeli-
hood Estimation (MLE) method. Due to the absence of closed-
form solutions for the derived likelihood equations, parameter
estimation is performed through the Berndt–Hall–Hall–Hausman
(BHHH) iterative algorithm, ensuring convergence and numeri-
cal stability. This study contributes to the theoretical develop-
ment of spatial count regression models by introducing a ro-
bust and flexible framework capable of modeling bivariate data
characterized by overdispersion and excess zeros. The MGWBZ-
INBR model allows for both local and global variations in predic-
tor effects, making it suitable for spatially heterogeneous data
contexts. To preserve the focus on methodological formulation,
empirical or simulation-based applications are intentionally ex-
cluded. Future research is encouraged to implement the MGW-
BZINBRmodel in real-world data scenarios across disciplines such
as public health, urban planning, and environmental studies, or
to explore alternative estimation techniques that may enhance
computational efficiency.
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