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Parameter Estimation and Hypothesis Testing of GTW Compound
Correlated Bivariate Poisson Regression Model: A Theoretical
Development

Priyanka Ratulangi Hargandi1,∗, Purhadi1, Achmad Choiruddin1

1Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

ABSTRACT. Each observation location and time possesses distinct characteristics, reflecting heterogeneity at every
observation point, both spatially and temporally. This condition renders the Compound Correlated Bivariate Poisson
Regression (CCBPR) model inadequate for representing data dynamics that exhibit spatial and temporal heterogene-
ity. To address this limitation, the Geographically and Temporally Weighted Compound Correlated Bivariate Poisson
Regression (GTWCCBPR) model is employed, which allows parameter variation across locations and time periods. This
model also incorporates the exposure variable as a weighting factor to adjust for differences in risk across observa-
tional units. This study aims to estimate the parameters of the GTWCCBPR model using the Maximum Likelihood
Estimation (MLE) approach. Due to the complex structure of the model, the log-likelihood function does not yield
a closed-form solution. Therefore, parameter estimation is performed using the iterative Berndt-Hall-Hall-Hausman
(BHHH) algorithm. Subsequently, hypothesis testing is conducted to evaluate the parameter similarity between the
global model (CCBPR) and the spatiotemporal model (GTWCCBPR), as well as to assess the significance of each pre-
dictor variable. Simultaneous testing is carried out using the Maximum Likelihood Ratio Test (MLRT), while partial
testing is conducted using the Z-test. The scope of this study is limited to theoretical formulation and methodological
development, without empirical or simulation-based validation. Future research may extend this work by applying the
GTWCCBPR model to practical datasets exhibiting spatio-temporal heterogeneity, particularly in areas such as public
health (e.g., maternal and postneonatal mortality), epidemiology, or regional planning.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonComercial 4.0 International License. Editorial of JJoM: Department of Mathematics, Uni-
versitas Negeri Gorontalo, Jln. Prof. Dr. Ing. B. J. Habibie, Bone Bolango 96554, Indonesia.

1. Introduction
Poisson regression is a widely used statistical approach for

modeling the relationship between count response variables and
a set of explanatory variables. In this model, the response vari-
able is assumed to follow a Poisson distribution, with the funda-
mental assumption of equidispersion, where the mean and vari-
ance are equal [1]. However, in many empirical applications, this
assumption is often violated due to the presence of overdisper-
sion, a condition in which the variance exceeds the mean. Such
violations can lead to inefficient parameter estimates and invalid
hypothesis testing results [2]. Furthermore, in situations involv-
ing two correlated response variables, more complex approaches
are required to capture dependency structures and fluctuating
variances appropriately [3].

To address overdispersion and simultaneously model two
correlated response variables, the Compound Correlated Bivari-
ate Poisson Regression (CCBPR) model has been developed. This
model is an extension of bivariate Poisson regression, incorpo-
rating shared latent components to capture interdependence be-
tween responses and unexplained variance [4]. To enhance the
model’s flexibility in dealing with overdispersion, the General-
ized Inverse Gaussian (GIG) distribution is employed as a mixing
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component. The GIG distribution has proven effective in han-
dling highly skewed and heavy-tailed count data, offering more
adaptive and flexible dispersion control [5, 6]. Nevertheless, a
critical limitation of the CCBPR model is its assumption of glob-
ally homogeneous regression parameters across space and time.
In reality, geographical characteristics, socioeconomic contexts,
temporal dynamics, and policy interventions may induce spatial-
temporal heterogeneity [7, 8]. Ignoring this heterogeneity may
lead to biased parameter estimates and misleading interpreta-
tions.

Several studies have extended the CCBPR framework
through various approaches. Salby [9] implemented the CCBPR
model using the GIG distribution and included exposure vari-
ables, with parameter estimation conducted through the Max-
imum Likelihood Estimation (MLE) method via the iterative
Berndt–Hall–Hall–Hausman (BHHH) algorithm. While effective
in addressing overdispersion and response correlation, this ap-
proach remains global in nature and does not incorporate spa-
tial or temporal heterogeneity. In contrast, Safarida [10] pro-
posed the Geographically Weighted Compound Correlated Bi-
variate Poisson Regression (GWCCBPR) model, which allows for
spatially varying parameters, but still lacks an explicit temporal
component. Consequently, no existing model comprehensively
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addresses bivariate correlation, overdispersion, and spatial-
temporal heterogeneity simultaneously. Similarly, Fotheringham
et al. [11] and Huang et al. [12] introduced geographically and
temporally weighted regression (GTWR) for capturing local varia-
tion, although their models are not tailored formultivariate count
data with overdispersion.

As a solution to these limitations, this study proposes the
Geographically and Temporally Weighted Compound Correlated
Bivariate Poisson Regression (GTWCCBPR) model. This model ex-
tends the CCBPR framework by incorporating spatial and tem-
poral weights based on geographic proximity and observation
time, enabling locally varying regression parameters. Exposure
variables are also considered as risk adjusters to account for dif-
ferences across observational units [13]. The GTWCCBPR model
is designed to accommodate bivariate response dependency, cor-
rect for overdispersion, and capture spatial and temporal hetero-
geneity concurrently. Thus, it offers a methodological advance-
ment for analyzing complex and dynamic bivariate count data
and has potential applications across various location- and time-
based phenomena.

This study specifically aims to estimate parameters and
conduct hypothesis testing within the GTWCCBPR framework.
Although the development presented in this study is theoreti-
cal, the proposed GTWCCBPR model is designed with practical
applicability in mind, particularly for modeling real-world data
characterized by spatial and temporal count processes. Poten-
tial applications include public health surveillance (e.g., mater-
nal and neonatal mortality), regional economic disparity, and en-
vironmental risk analysis. Parameter estimation is performed
using the Maximum Likelihood Estimation (MLE) method, opti-
mized through the Berndt–Hall–Hall–Hausman (BHHH) algorithm
due to the lack of closed-form solutions for the log-likelihood
function. Hypothesis testing is conducted to assess the equiv-
alence of parameters between the global CCBPR model and the
spatial-temporal GTWCCBPRmodel, as well as to evaluate the sig-
nificance of individual predictor variables. Simultaneous testing
is carried out using the Maximum Likelihood Ratio Test (MLRT),
while partial tests are conducted using Z-tests.

2. Model
2.1. Compound Correlated Bivariate Poisson Regression Models

The Compound Correlated Bivariate Poisson Regression
(CCBPR) model extends the Bivariate Poisson Regression (BPR)
model by introducing a compound Poisson structure. This exten-
sion allows the model to effectively handle overdispersion and
correlation in count data. The CCBPRmodel is an advancement of
the Bivariate Negative Binomial model [6], offering greater flex-
ibility for modeling count-based outcomes with excessive vari-
ance. The probability mass function (PMF) of the CCBP distribu-
tion is defined as follows [5]:

(Y1, Y2) ∼ CCBP (λ1 (q1) , λ2 (q2) , λ0 (q0) , ϕ) (1)

P (y1, y2) =
1

Kγ (v)

s∑
a=0

ψ1ψ2Ky1+y2−a+γ (z) (2)

where:

ψ1 =
λ0

a (q0)

a!
,

ψ2 =

2∏
k=1

λk
yk−a (qk)

(yk − a)!

(v
z

)y1+y2−a+γ

,

z =
√
v (v + 2 (λ1 (q1) + λ2 (q2) + λ0 (q0))),

v =
√
ϕ2 + 1− 1, −∞ < γ <∞,

s = min (y1, y2).

The termsKγ andKy1+y2−a+γ are modified Bessel functions of
the third type.

Let yki is the kth response variable for ith ob-
servation. Given a random sample (Y1i, Y2i) ∼
CCBP (λki (qki) , λki (qki) , λ0 (q0) , ϕ) , where i = 1, 2, · · · , n
and k = 1, 2, the CCBPR model is expressed as:

ln
E(Yki)

qki
= xiTβk, (3)

where E (Yki) = λki (qki) = qkiexp
(
xiTβk

)
, qki denotes

the exposure variable from response variables for each obser-
vation, xiT =

[
1 X1i X2i . . . Xpi

]
1×(p+1)

represents the row vector of predictor variables, and
βk=

[
βk0 βk1 βk2 . . . βkp

]T
is the vector of

regression coefficients for the k-th response.

2.2. Geographically and Temporally Weighted Compound Correlated
Bivariate Poisson Regression Models

The GTWCCBPR model extends the CCBPR model by in-
corporating spatial and temporal variation into parameter esti-
mation. This model is designed to handle overdispersed and
correlated bivariate count data, where regression coefficients
vary locally according to spatial coordinates (ui, vi) and obser-
vation time (ti). The joint distribution of response variables
(Y1, Y2) is modeled using a CCBPR structure, with intensity
functions expressed as exposure-adjusted covariates and time–
location-specific parameters. The joint probability function of
the GTWCCBPR model for the response pair (Y1il, Y2il), where
i = 1, 2, . . . ., n and l = 1, 2, . . . ., L, is defined as follows:

P (Y1il = y1il, Y2il = y2il) =
1

Kγl (v)

s∑
a=0

φ1φ2Ky1il+y2il−a+γ (zil),

(4)
where:

φ1 =
λ0

a (q0)

a!
,

φ2 =

2∏
k=1

qkilexp
(
xTilβkLi

) ykil−a

(ykil − a)!

(
v

zil

)y1il+y2il−a+γ

,

zil =

√√√√v

(
v + 2

(
2∑

k=1

qkilexp
(
xTilβkLi

)
+λ0 (q0)

))
,

v =
√
ϕ2 + 1− 1,−∞ < γ <∞, s = min (y1il, y2il) ,

βkLi = βkl (ui, vi, ti) ; k = 1, 2.

The termsKγl(v) andKy1il+y2il−a+γ(z) denote modifed Bessel
function of the third type.

The GTWCCBPRmodel with exposure can generally be writ-
ten:

E (Ykil) = λkil (qkil, xil) (5)
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= qkilexp
(
xTilβkl (ui, vi, ti)

)
, k = 1, 2,

where

xil = [1 x1il x2il · · · xpil]
T
,

βkl(ui, vi, ti) = [βk0l(ui, vi, ti) βk1l(ui, vi, ti) · · ·

βkpl(ui, vi, ti)]
T
.

Here, xil and βkl (ui, vi, ti) denote the predictor vector
and the spatiotemporally varying regression coefficients, respec-
tively, consistent with the notation defined earlier. This model
enables a flexible and localized analysis of spatial-temporal pat-
terns, allowing for more accurate inference in datasets exhibiting
geographic and temporal variation.

3. Results and Discussion
3.1. Parameter Estimation of GTWCCBPR

The GTWCCBPR model is an extension of the CCBPR model
that incorporates both spatial and temporal heterogeneity in bi-
variate count data. It allows parameter estimates to vary across
locations and time periods by applying a spatial-temporal weight-
ing scheme. As a result, the model produces locally varying esti-
mates for each spatio-temporal observation unit.

Parameter estimation in the GTWCCBPR model is per-
formed using the Maximum Likelihood Estimation (MLE). The key
parameters to be estimated include βkLi, ϕ, and λ0. The likeli-
hood function is derived from the join probability density func-
tion (PDF) of Y1 and Y2, as specified in eq. (4). The parameters
to be estimated in the GTWCCBPR model can be represented in
matrix form as:

θi∗L,GTWCCBPR =
[
βT
1Li∗ βT

2Li∗ ϕ λ0
]T
. (6)

Applying the natural logarithm to the probability function in
eq. (4), the ln probability for the i∗ observation is obtained as:

ln P (y1il, y2il|θi∗L,GTWCCBPR)

= ln

[
1

Kγl (v)

s∑
a=0

φ1φ
∗
2Ky1il+y2il−a+γ (zi∗l)

]
(7)

where:

φ∗
2 =

2∏
k=1

qkilexp
(
xTilβkLi∗

) ykil−a

(ykil − a)!

(
v

zi∗l

)y1il+y2il−a+γ

,

zi∗l =

√√√√v

(
v + 2

(
2∑

k=1

qkilexp
(
xTilβkLi∗

)
+λ0 (q0)

))
.

Next, for each parameter in the GTWCCBPR model, the ln
probability function in eq. (7) is partially differentiated and set
equal to zero, resulting in a system of estimating equations de-
fined as follows:

∂lnP (y1il, y2il|θi∗L,GTWCCBPR)

∂β1Li∗

=
1

Ail

s∑
a=0

[
(y1il − a)T1 + q1ilexp

(
xTilβ1Li∗

)
(T2 + T3)

]
, (8)

∂lnP (y1il, y2il|θi∗L,GTWCCBPR)

∂β2Li∗

=
1

Ail

s∑
a=0

[
(y2il − a)T1 + q2ilexp

(
xTilβ2Li∗

)
(T2 + T3)

]
, (9)

where:

Ail =

s∑
a=0

φ1φ
∗
2 Ky1il+y2il−a+γ (zi∗l) ,

T1 = φ1φ
∗
2xilKy1il+y2il−a+γ (zi∗l) ,

T2 = φ1φ
∗
2(−1) (y1il+y2il−a+γ)

(
v

zi∗l

)−1

(v)
2xil

zi∗l3
Ky1il+y2il−a+γ (zi∗l) ,

T3 = φ1φ
∗
2

vxil
zi∗l

(
(y1il+y2il−a+γ)

(zi∗l)
Ky1il+y2il−a+γ (zi∗l)

−Ky1il+y2il−a+γ+1 (zi∗l)) .

In this study, the parameters ϕ and λ0 in the GTWCCBPR
model are retricted and assumed to adopt the estimates obtained
form the CCBPR model. The resulting equations are presented as
follows:

∂lnP (y1i, y2i|θCCBPR)
∂λ0

=
1

Bi

s∑
a=0

[(
aλa−1

0

a!
ψ2iKy1i+y2i−a+γ (zi)

)

+

(
v2

(zi)
3/2

U1

)
+

((
v

zi

)
U

2

)]
,

(10)

∂lnP (y1i, y2i|θCCBPR)
∂ϕ

=
1

Bi

s∑
a=0

U1

(
ϕz∗

l

(ϕ2+1)1/2
− v

2zi
Q
)

(zi)
3/2


+

(
U2

1

2zi
Q

)]
−

(
v

γ
− Kγ+1 (v)

Kγ (v)

(
ϕ

(ϕ2 + 1)
1/2

))
,

(11)

where:

Bi =

s∑
a=0

ψ1iψ2iKy1i+y2i−a+γ (zi),

U1 = ψ1i (y1i + y2i − a+ γ)ψ2i

(
v

zi

)−1

Ky1i+y2i−a+γ (zi) ,

U2 = ψ1iψ2i

(
(y1i + y2i − a+ γ)

zi
Ky1i+y2i−a+γ (zi)

−Ky1i+y2i−a+γ+1 (zi)) ,

Q =

ϕ
(
v + 2

∑2
k=1 qkiexp

(
xTi βk

)
+ λ0

)
(ϕ2 + 1)

1/2
+

ϕv

(ϕ2 + 1)
1/2

 .

The likelihood function used to estimate the population pa-
rameters in the GTWCCBPR model is given as follows.

L (θiL,GTWCCBPR) =

L∏
l=1

n∏
i=1

P (Y1il = y1il, Y2il = y2il)
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=

L∏
l=1

n∏
i=1

(
1

Kγl (v)

s∑
a=0

φ1φ2Ky1il+y2il−a+γ (zil)

)
.

The natural logaritm is applied to the likelihood function.
Then, the spatial and temporal weights wii∗l (ui, vi, ti) are are
incorporated into the natural logarithm of likelihood function,
resulting in the weighted ln likelihood formulation.

ℓ (θi∗L,GTWCCBPR)

=

L∑
l=1

n∑
i=1

ln(P (Y1il = y1il, Y2il = y2il; β1Li∗ ;β2Li∗))
wii∗l

= −
L∑

l=1

n∑
i=1

wii∗l ln (Kγl (v)) +

(
L∑

l=1

n∑
i=1

wii∗l lnCi∗

)
,

(12)

where

Ci∗ =

s∑
a=0

φ1φ
∗
2Ky1il+y2il−a+γ (zi∗l).

Next, for each parameter in GTWCCBPR model in eq. (6),
the ln likelihood function in eq. (12) is partially differenti-
ated with respect to each parameter and set equal to zero.
Let θi∗L,GTWCCBPR denote the local parameter vector at lo-
cation i∗ and time L, comprising the regression coefficient
β1Li∗ , β2Li∗ , the dispersion parameter ϕ, and the shared latent
parameter λ0. The local estimating function, or vector, is defined
as:

g (θi∗L,GTWCCBPR) =



∂ℓ(θi∗L,GTWCCBPR)
∂β1Li∗

∂ℓ(θi∗L,GTWCCBPR)
∂β2Li∗

∂ℓ(θi∗L,GTWCCBPR)
∂ϕ

∂ℓ(θi∗L,GTWCCBPR)
∂λ0



=


∑L

l=1

∑n
i=1 wii∗l

∂lnP(y1li,y2li|θi∗L,GTWCCBPR)
∂β1Li∗∑L

l=1

∑n
i=1 wii∗l

∂lnP(y1li,y2li|θi∗L,GTWCCBPR)
∂β2Li∗∑L

l=1

∑n
i=1 wii∗l

∂lnP (y1i,y2i|θCCBPR)
∂ϕ∑L

l=1

∑n
i=1 wii∗l

∂lnP (y1i,y2i|θCCBPR)
∂λ0

 . (13)

Each component of the vector g (θi∗L,GTWCCBPR) rep-
resents a weighted summation of the partial derivatives of
the local log-likelihood contributions from all spatial units i
over all time periods l, where the weight function wii∗l ac-
counts for both spatial and temporal proximity to the target
location i∗ at time L. The expression for the partial deriva-

tives
∂lnP(y1li,y2li|θi∗L,GTWCCBPR)

∂(θi∗L,GTWCCBPR)
have been derived in eq. (8)–

eq. (11).
The first derivate of the ln likelihood function in equa-

tion does not yield a closed-form solution, therefore the MLE
estimation must be obtained numerically. In this study, the
BHHH iteration method is umployed for numerical estimation,
as the Hessian matrix can be approximated without requiring
computation the second derivates of the ln likelihood function
ℓ (θi∗L,GTWCCBPR) [14, 15]. Unlike other optimization tech-
niques such as Fisher Scoring and Newton-Raphson, which re-
quire computation of second-order derivatives, the BHHH algo-

rithm relies only on the outer product of gradients. This ap-
proach simplifies the optimization process, improves numerical
stability, and guarantees that each iteration increases the value of
ln likelihood function, thereby enhancing convergence reliability.

These properties make BHHH particularly suitable for the
GTWCCBPR model, where parameter estimation must be per-
formed locally at multiple spatio-temporal locations. Since the
likelihood equations do not have closed-form solutions, param-
eter estimation is conducted numerically through a two-phase
process: an initialization step to generate starting values, fol-
lowed by an iterative procedure applied independently at each
space-time point using the gradient and the approximated Hes-
sian.

The detailed estimation procedure is outlined out in the
following steps: Stage I : Initial Parameter Estimation
• Step 1. Initialize iteration counter: m = 0

• Step 2. Compute initial estimate θ(0)
i∗L,GTWCCBPR, where

the initial parameter estimates are obtained form the fitted
CCBPR model.

• Step 3. Form the initial parameter vector:

θ
(0)
i∗L,GTWCCBPR =

[
β̂
T (0)

1Li∗ β̂
T (0)

2Li∗
ϕ̂(0) λ̂

(0)
0

]T
.

• Step 4. Set the convergence tolerance ε > 0 (e.g.,
ε = 10−5) and maximum iterationsM (e.g.,M = 1000).

Stage II : Iterative Estimation Using the BHHH Algorithm
• Step 1. Compute the gradient vector g (θi∗L,GTWCCBPR).
The gradient vector is obtained by taking the partial deriva-
tives of the local weighted ln likelihood function with re-
spect to each parameter, as shown in eq. (13).

• Step 2. Construct the Hessian approximation as a negative
definite matrix using the outer product of the gradient vec-
tor components.

H (θi∗L,GTWCCBPR)

= −
L∑

l=1

n∑
i=1

wii∗l gil (θi∗L,GTWCCBPR) gil (θi∗L,GTWCCBPR)
T
.

The term gil (θi∗L,GTWCCBPR) denotes the gradient vec-
tor, whose components are defined in eq. (8)–eq. (11).

• Step 3. Substitute the initial parameter values into the ele-
ments of the gradient vector and the Hessian matrix.

• Step 4. Start the iteration atm = 0 with:

θ̂
(m+1)

i∗L,GTWCCBPR = θ̂
(m)

i∗L,GTWCCBPR

− H−1

(
θ̂
(m)

i∗L,GTWCCBPR

)
g
(
θ̂
(m)

i∗L,GTWCCBPR

)
.

• Step 5. Stop the iteration when:∥∥∥∥θ̂(m+1)

i∗L,GTWCCBPR − θ̂
(t)

i∗L,GTWCCBPR

∥∥∥∥ ≤ ε.

or if the maximum iterationsM is reached. In this study, the
convergence criterion is based on the relative change in the
parameter estimates. The iteration stops when the change
is smaller than a small positive threshold ε (e.g., ε = 10−5),
or when the number of iterations reaches a maximum limit
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M (e.g., M = 1000). These values are commonly adopted in
numerical optimization and can be adjusted depending on
the model complexity, data size, or convergence behavior.
To ensure numerical stability during the iterative process,
the condition number of the Hessian approximation is mon-
itored.

• Step 7. The final parameter vector is:

θ̂i∗L,GTWCCBPR = θ̂
(M)

i∗L,GTWCCBPR

=
[
β̂
T

1Li∗ β̂
T

2Li∗ ϕ̂ λ̂0

]T
.

3.2. Hypothesis Testing of GTWCCBPR
Before evaluating the significance of predictor variables, a

model similarity test is first conducted to compare the global
model (CCBPR) with the proposed spatiotemporal model (GTWC-
CBPR). This test aims to assess whether the inclusion of spatial
and temporal weights significantly improves model fit. In this
theoretical development, hypothesis testing procedures such as
Z-tests and MLRT are illustrated using a conventional significance
level of α = 0.05, although the value of α may be adjusted de-
pending on the research context or desired level of inference pre-
cision. The hypotheses are formulated as follows:

H0 : βkjLi = βkj ; k = 1, 2; i = 1, 2, . . . , n; j = 1, 2, . . . , p,

H1 : ∃βkjLi ̸= βkj .

The test statistic is given by:

F =

G2
CCBPR

df1

G2
GTWCCBPR

df2

,

where G2
CCBPR is the deviance of the global CCBPR model,

G2
GTWCCBPR is the deviance of the spatiotemporal GTWCCBPR
model, and df1 and df2 denote the respective degrees of free-
dom for the CCBPR and GTWCCBPR models.

The deviance of the GTWCCBPR model, denoted
G2

GTWCCBPR, is obtained using the following test statis-
tic based on the likelihood ratio:

G2
GTWCCBPR = −2 ln

(
L(ω̂GTWCCBPR)

L(Ω̂GTWCCBPR)

)
= 2

(
lnL(Ω̂GTWCCBPR)− lnL(ω̂GTWCCBPR)

)
,

where L
(
Ω̂GTWCCBPR

)
denotes the ln likelihood under the

full model specification that incorporates all predictor terms, and
L (ω̂GTWCCBPR) refers to the ln likelihood evaluated under the
restricted model without predictors. ln likelihood function under
the population, l

(
Ω̂GTWCCBPR

)
= lnL

(
Ω̂GTWCCBPR

)
is

expressed as follows:

l(Ω̂GTWCCBPR)

=

L∑
l=1

n∑
i=1

ln

(
1

Kyl
(υ̂)

s∑
a=0

ϕ̂1ϕ̂2Ky1il+y2il−a+γ(Ẑil)

)
,

where

ϕ̂1 =
λ̂a0(q0)

a!
,

ϕ̂2 =

2∏
k=1

qkil exp(xTilβ̂kLi)
ykil−a

(ykil − a)!

(
υ̂

Ẑil

)y1il+y2il−a+γ

,

Ẑil =

√√√√υ̂

(
υ̂ + 2

(
2∑

k=1

qkil exp(xTilβ̂kLi)

)
+ λ̂0

)
,

υ̂ = ϕ̂2 + 1− 1.

The parameter estimation process under the null hypothe-
sisH0, based on the ln likelihood function l (ω̂GTWCCBPR), fol-
lows the same procedure as in the full model. The log-likelihood
function is partially differentiated with respect to each element
in the parameter vector ω̂GTWCCBPR, and the resulting estimat-
ing equations are obtained by setting these derivatives equal to
zero. Parameter estimation is then carried out numerically us-
ing the Berndt–Hall–Hall–Hausman (BHHH) iterative algorithm,
without requiring the explicit computation of the second-order
derivatives of the log-likelihood function.

l(ω̂GTWCCBPR)

=

L∑
l=1

n∑
i=1

ln

(
1

Kyl
(υ̂ω)

s∑
a=0

ϕ̂ω1ϕ̂ω2Ky1il+y2il−a+γ(Ẑωil)

)
,

where

ϕ̂ω1 =
λ̂a0ω(q0)

a!
,

ϕ̂ω2 =

2∏
k=1

qkil exp(xTilβ̂0kωL)
ykil−a

(ykil − a)!

(
υ̂ω

Ẑωil

)y1il+y2il−a+γ

,

Ẑωil =

√√√√υ̂ω

(
υ̂ω + 2

(
2∑

k=1

qkil exp(xTilβ̂0kωL)

)
+ λ̂0

)
,

υ̂ω =

√
ϕ̂2ω + 1− 1.

Criteria for rejection H0 is F > Fα;df1;df2
.

Subsequently, the GTWCCBPR model is evaluated using the
Maximum Likelihood Ratio Test (MLRT) to assess the statistical
significance of the predictor variables [16]. This method supports
both simultaneous testing, which examines the joint effect of all
predictors, and partial testing, which evaluates the significance
of each parameter individually. The overall model significance is
tested under the following null and alternative hypotheses:

H0 : βk1Li = βk2Li = · · · = βkpLi = 0; ∀k = 1, 2; i = 1, 2, . . . , n,

H1 : ∃βkjLi ̸= 0; with k = 1, 2; i = 1, 2, . . . , n; j = 1, 2, . . . , p.

The test statistic for the MLRT is given by:

G2 = −2ln

 L (ω̂GTWCCBPR)

L
(
Ω̂GTWCCBPR

)


= 2
(
lnL

(
Ω̂GTWCCBPR

)
− lnL (ω̂GTWCCBPR)

)
.
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Criteria for rejection H0 is G2 > χ2
α;p, where the degress of

freedom are given p = n ((ΩGTWCCBPR)− (ωGTWCCBPR)) .
A partial hypothesis is conducted to determine which spe-

cific predictor variables significantly influence the model. The
hypothesis for an individual parameter βkjLi are:

H0 : βkjLi = 0,

H1 : βkjLi ̸= 0; with k = 1, 2; i = 1, 2, . . . , n; j = 1, 2, . . . , p.

The test statistics for individual parameters follows a Z-test for-
mula:

Z =
β̂kjLi

se
(
β̂kjLi

) ,
where se

(
β̂kjLi

)
=

√
V̂ ar

(
β̂kjLi

)
. The variance of β̂kjLi

is obtained from the main diagonal elements of the esti-
mated variance-covariance matrix, computed asĈov

(
θ̂
)

=

−Ê
(
H−1

(
θ̂
))

= −H−1
(
θ̂
)
. The null hypothesisH0 is rejected

when |Z| > Zα/2 with α denotes the significance level.

4. Conclusion
Parameter estimation for the Geographically and Tempo-

rally Weighted Compound Correlated Bivariate Poisson Regres-
sion (GTWCCBPR) model is carried out using the Maximum Like-
lihood Estimation (MLE) method. Due to the absence of a closed-
form solution for the derived log-likelihood function, the estima-
tion process is implemented through the iterative Berndt–Hall–
Hall–Hausman (BHHH) optimization algorithm to ensure conver-
gence and numerical stability. After parameter estimation, hy-
pothesis testing is conducted to evaluate model similarity be-
tween the global CCBPR and the proposed GTWCCBPR models,
as well as to assess the significance of each predictor variable. Si-
multaneous testing is performed using the Maximum Likelihood
Ratio Test (MLRT), while partial testing is conducted using the
Z-test. This study contributes to the theoretical development
of spatiotemporal count regression models by offering a flexible
and robust framework for analyzing correlated bivariate count
data characterized by overdispersion and spatial-temporal het-
erogeneity. Future research may explore the empirical applica-
tion of the GTWCCBPR model using real-world datasets to eval-
uate its practical performance. Although this study is theoret-
ical, the proposed model is expected to be applicable in areas
such as public health surveillance, regional development plan-
ning, and environmental risk modeling, where bivariate count
data and spatio-temporal dynamics are prevalent.
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