Penduga Konsisten dari Fungsi Sebaran dan Fungsi Kepekatan Peluang Waktu Tunggu Proses Poisson Periodik

Fatimah Azzahra, I Wayan Mangku

Abstract


ABSTRAK

Penduga yang konsisten dari fungsi distribusi dan fungsi kepekatan peluang waktu tunggu dari proses Poisson periodik dibahas dalam artikel ini. Tidak ada asumsi bentuk parametrik tertentu dari fungsi intensitas proses Poisson periodik. Situasi dipertimbangkan ketika hanya ada realisasi tunggal dari proses Poisson periodik yang teramati dalam interval terbatas [0,n]. Hasil pembuktian menunjukkan bahwa penduga yang diusulkan konsisten ketika n->??.

 

ABSTRACT

The consistent estimator of the distribution and the density functions of the waiting time of a cyclic Poisson process is considered and investigated. We do not assume any particular parametric form of the intensity function of the cyclic Poisson process. We consider the situation when there is only a single realization of the cyclic Poisson process is spotted in a bounded interval [0,n]. We proved that the propose estimators are consistent as n->??.


Keywords


Poisson Process; Density; Waiting Time; Consistent Estimation

Full Text:

PDF [INDONESIA]

References


R.G. Gallager, Discrete Stochastic Processes. New York: Springer Science+Business Med., 1996.

T.A. Walls, J.L. Schafer, Models for Intensive Longitudinal Data. New York: Oxford Univ. Pr., 2006.

T. Ngailo, N. Shaban, J. Reuder, E.C. Rutalebwa, and I. Mugume, “Non Homogeneous Poisson Process Modelling of Seasonal Extreme Rainfall Events in Tanzania,” 2016.

D. Vere-Jones and T. Ozaki, “Some examples of statistical estimation applied to earthquake data,” Ann. Inst. Stat. Math., vol. 34, no. 1, pp. 189–207, 1982, doi: 10.1007/BF02481022.

J.J. Brey, J. Casado-Pascual, and B. Sánchez, “Resonant behavior of a Poisson process driven by a periodic signal,” Phys. Rev. E., vol. 52, no. 6, pp. 6071–6081, Dec. 1995, doi: 10.1103/PhysRevE.52.6071.

T. Rolski, “Relationships between characteristics in periodic Poisson queues,” Queueing Syst., vol. 4, no. 1, pp. 17–26, 1989, doi: 10.1007/BF01150853.

S.M. Ross, Introduction to Probability Models, 9 Edition. Orlando: Academic Press Inc., 2010.

I.W. Mangku, “Consistent estimation of the distribution function and the density of waiting time of a cyclic Poisson process with linear trend,” Far East J. of Theo. Stat., vol. 33, no. 1, pp. 81-91, 2010.

D.F. Putera, “Kekonsistenan penduga dari fungsi sebaran dan fungsi kepekatan peluang waktu tunggu proses Poisson periodik dengan tren fungsi pangkat,” Institut Pertanian Bogor, 2012.

R. Helmers and I.W. Mangku, “Predicting a cyclic Poisson process,” Annals Inst. of Stat. Math., vol. 6, no. 4, pp. 1261-1279, 2012, doi:10.1007/s10463-012-0349-x

S. Browne and U. Yechiali, “Dynamic Priority Rules for Cyclic-Type Queues,” Adv. Appl. Probab., vol. 21, no. 2, pp. 432–450, May 1989, doi: 10.2307/1427168.

B.N. Dimitrov, V.V. Rykov, and Z.L. Krougly, “Periodic Poisson Processes and Almost-lack-of-memory Distributions,” Autom. Remote Control, vol. 65, no. 10, pp. 1597–1610, 2004, doi: 10.1023/B:AURC.0000044269.32890.3e.

S.G. Henderson, “Estimation for nonhomogeneous Poisson processes from aggregated data,” Oper. Res. Lett., vol. 31, no. 5, pp. 375–382, 2003, doi: https://doi.org/10.1016/S0167-6377(03)00027-0.

R. Helmers, I.W. Mangku, and R. Zitikis, “Consistent estimation of the intensity function of a cyclic Poisson process,” J. Multivar. Anal., vol. 84, no. 1, pp. 19–39, 2003, doi: 10.1016/S0047-259X(02)00008-8.

R. Helmers, I.W. Mangku, and R. Zitikis, “Statistical properties of a kernel-type estimator of the intensity function of a cyclic Poisson process,” J. of Multivar. Anal., vol. 92, no. 1, pp. 1-23, 2005, doi: 10.1016/S0047-259X(03)00082-4.

W. Erliana, I.W. Mangku, and H. Sumarno, “Estimating the intensity obtained as the product of a periodic function with the power function trend of a non-homogeneous Poisson process,” Far East J. of Math. Sci., vol. 90, no. 2, pp. 163-172, 2014.

R. Helmers and I.W. Mangku, “Estimating the intensity of a cyclic Poisson process in the presence of linear trend,” Annals Inst. of Stat.l Math., vol 61, no. 3, pp. 599-628, 2009, doi: 10.1007/s10463-007-0160-2.

Y. I. Ingster and Y. A. Kutoyants, “Nonparametric hypothesis testing for intensity of the poisson process,” Math. Methods Stat., vol. 16, no. 3, pp. 217–245, 2007, doi: 10.3103/S1066530707030039.

I.W. Mangku, “Consistent estimation of the distribution function and the density of waiting time of a cyclic Poisson process with linear trend,” Far East J. of Theo. Stat., vol. 33, no. 1, pp. 81-91, 2010.

I.W. Mangku, R. Budiarti, Taslim, and Casman, “Estimating the intensity obtained as the product of a periodic function with the quadratic trend of a non-homogeneous Poisson process,” Far East J. of Math. Sci., vol. 82, no. 1, pp. 33-44, 2013.

I.W. Mangku, Siswadi, and R. Budiarti, “Consistency of a kernel-type estimator of the intensity of the cyclic Poisson process with the linear trend,” J. Indones. Math. Soc., vol. 15, no. 1, 2012, doi: 10.22342/jims.15.1.42.37-48.

I.W. Mangku, Siswadi, and R. Budiarti 2011, “Asymptotic approximations to the bias and variance of a kernel-type estimator of the intensity of the cyclic Poisson process with the linear trend,” J. of the Indones. Math. Soc., vol. 17, no. 1, pp. 1-9, 2011.

I. Maulidi, I.W. Mangku, and H. Sumarno, “Strong consistency of a kernel-type estimator for the intensity obtained as the product of a periodic function with the power function trend of a non-homogeneous Poisson process,” Br. J. Appl. Sci. Technol., vol. 9, no. 4, pp. 383–387, 2015, doi: 10.9734/bjast/2015/17391.

I. W. Mangku, “Estimating the intensity of a cyclic Poisson process in the presence of additive and multiplicative linear trend,” J. Phys. Conf. Ser., vol. 893, p. 012023, Oct. 2017, doi: 10.1088/1742-6596/893/1/012023.

K. P. White, “Simulating a nonstationary Poisson process using bivariate thinning: the case of ‘typical weekday’ arrivals at a consumer electronics store,” in WSC’99. 1999 Winter Simulation Conference Proceedings. “Simulation - A Bridge to the Future” (Cat. No.99CH37038), 1999, vol. 1, pp. 458–461 vol.1, doi: 10.1109/WSC.1999.823109.

L. E. Morgan, B. L. Nelson, A. C. Titman, and D. J. Worthington, “A Spline-Based Method for Modelling and Generating A Nonhomogeneous Poisson Process,” in 2019 Winter Simulation Conference (WSC), 2019, pp. 356–367, doi: 10.1109/WSC40007.2019.9004867.




DOI: https://doi.org/10.34312/jjom.v3i2.10264



Copyright (c) 2021 Fatimah Azzahra, I Wayan Mangku

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (p-ISSN: 2654-5616 | e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office 

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo, Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia. Email: info.jjom@ung.ac.id.