Pendugaan Imbal Hasil Saham dengan Model Autoregressive Moving Average

Grifin Ryandi Egeten, Berlian Setiawaty, Retno Budiarti

Abstract


ABSTRAK


Seorang investor pada umumnya berharap untuk membeli suatu saham dengan harga yang rendah dan menjual saham tersebut dengan harga yang lebih tinggi untuk memperoleh imbal hasil yang tinggi. Namun, kapan waktu yang tepat melakukannya menjadi tantangan tersendiri bagi para investor. Oleh sebab itu, dibutuhkan suatu model yang mampu menduga imbal hasil saham dengan baik, salah satunya adalah model autoregressive moving average (ARMA). Tujuan dari penelitian ini adalah untuk menerapkan model autoregressive (AR), model moving average (MA), atau model autoregressive moving average (ARMA) pada data observasi untuk menduga imbal hasil saham bank central asia (BCA). Terdapat empat prosedur dalam membangun sebuah model AR, MA atau ARMA. Pertama, data yang digunakan harus weakly stationary. Kedua, orde dari model harus diidentifikasi untuk memperoleh model yang terbaik. Ketiga, parameter setiap model harus ditentukan. Keempat, kelayakan model harus diperiksa dengan melakukan analisis residual untuk memperoleh model yang terbaik. Pada akhirnya, model ARMA (1,1) adalah model terbaik dan akurat dalam menduga imbal hasil saham BCA.

 

ABSTRACT

Generally, investor always wish to be able to buy a stock at a low price and sell it at a higher price to obtain high returns. However, when is the best time to buy or sell it is a challenge for investor. Therefore, proper models are needed to predict a stock return, one of them is autoregressive moving average (ARMA) model. The first purpose of this paper is to apply the autoregressive (AR), moving average (MA) or ARMA models to the observations to predict stock returns. There are four procedures which is used to build an AR, MA, or ARMA model. First, the observations must be weakly stationary. Second, the order of the models must be identified to obtain the best model. Third, the unknown parameters of the models are estimated by maximum likelihood. Fourth, through residual analysis, diagnostic checks are performed to determine the adequacy of the model. In this paper, stock returns of BCA are used as data observation. Finally, the ARMA (1,1) model is the best model and appropriate to predict the stock returns BCA in the future.


Keywords


Stock return; Autoregressive (AR); Moving Average (MA); Autoregressive Moving Average (ARMA); Prediction

Full Text:

PDF [INDONESIA]

References


N. Dritsakis and G. Savvas, “Forecasting Volatility Stock Return: Evidence from the Nordic Stock Exchanges,” International Journal of Economics and Finance, vol. 9, no. 2, pp. 15-31, Jan 2017.

S. Ding, T. Cui, X. Xiong and R. Bai, “Forecasting Stock Market Return with Nonlinearity: A Genetic Programming Approach,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no, 11, pp. 4927-4939, Nov 2020.

T. Bollerslev, V. Todorov and L. Xu, “Tail Risk Premia and Return Predictability,” Journal of Financial Economics, vol. 118, no. 1, pp. 113-134, Oct 2015.

B. Golez and P. Koudijs, “Four Centuries of Return Preditability,” Journal of Financial Economics, vol. 127, no. 2, pp. 248-263, Feb 2018.

R. Liu, J. Yang and C. Ruan, “Expected Stock Return and Mixed Frequency Variance Risk Premium Data,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 9, pp. 3585-3596, Sep 2020.

Y. Hu, Z. Tao, D. Xing, Z. Pan, J. Zhao and X. Chen, “Research on Stock Returns Forecast of the Four Major Banks Based on ARMA and GARCH Model,” Journal of Physics: Conference Series, vol. 1616, no.2, pp. 1-6, Aug 2020.

M. M. Rounaghi and F. N. Zadeh. “Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model”. Physica A: Statistical Mechanics and its Applications., vol. 456, pp. 10-21, Aug 2016.

N. G. Emenogu, M. O. Adenomon and N. O. Nwaze, “Modeling and Forecasting Daily Stock Returns of Guaranty Trust Bank Nigeria PLC Using ARMA-GARCH Models, Persistence, Half-Life Volatility and Backtesting,” Science World Journal, vol. 14, No. 3, pp. 1-22, Sep 2019.

G. Kirchgassner, J. Wolters and U. Hassler, Introduction to Modern Time Series Analysis, 2 Edition. Berlin: Springer-Verlag Berlin Heidelberg, 2013.

M. O. Adenomon, “Modelling and Forecasting Unemployment Rates in Nigeria Using ARIMA Model,” FUW Trends in Science and Technology Journal., vol. 2, no. 1B, pp. 525-531, Apr 2017.

T. M. J. A. Cooray, Applied Time Series: Analysis and Forecasting. California: Alpha Science Intl. Ltd., 2008.

I. Dobre and A. A. Alexandru, “Modelling Unemployment Rate Using Box-Jenkins Procedure,” Journal of Applied Quantitative Methods, vol. 3, no. 2, pp. 156-166, Jan 2008.

M. A. Din. “ARIMA by Box Jenkins Methodology for Estimation and Forecasting Models in Higher Education”. Athens: ATINER’S Conference Paper Series., no. EMS2015-1846, Mar 2016.

N. Dritsakis and P. Klazoglou. “Forecasting Unemployment Rates in USA Using Box-Jenkins Methodology”. International Journal of Economics and Financial Issues, vol. 8, no.1, pp. 9-20, 2018.

W. Zhang, Z. Zhou, and X. Xiong. 2018. “Behavioral heterogeneity and excess stock price volatility in china”. Finance Research Letters, vol. 28, pp. 348-354, Jun 2018.

R.H. Shumway and D. S. Stoffer, Time Series Analysis and Its Application with R example, 4 Edition. Cham: Springer, 2017.

D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series Analysis and Forecasting, 2 Edition. Hoboken, New Jersey: Wiley Interscience, 2015.

G. E. P Box, G. M Jenkins, and G. C Reinsel, G. M. Ljung, Time Series Analysis Forecasting and Control, 5 Edition. New Jersey: John Wiley & Sons, 2016.

R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 2 Edition. Australia: Monash University, 2018.

J. E. Cavanaugh and A. A. Neath. “The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation and Refinements”. WIREs Computational Statistics., vol. 11, no. 3, pp. 1-11, Jun 2019.

P. Lou, L. Wang, X. Zhang, J. Xu and K. Wang. “Modelling Seasonal Brucellosis Epidemics in Bayingolin Mongol Autonomous Prefecture of Xinjiang, China, 2010-2014”. BioMed Research International., no.1, pp.1-27, Sep 2016.




DOI: https://doi.org/10.34312/jjom.v3i2.10358



Copyright (c) 2021 Grifin Ryandi Egeten, Berlian Setiawaty, Retno Budiarti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (p-ISSN: 2654-5616 | e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office 

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo, Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia. Email: info.jjom@ung.ac.id.