Perbandingan Data Harian dan Data Bulanan pada Suhu Permukaan Laut di Samudera Hindia Menggunakan Partial Least Square-Structural Equation Modelling

Retno Wahyuni Putri, Miftahuddin Miftahuddin

Abstract


Sea surface temperature (SST) is one of the features of climate variability that has a significant role in human activities. This study aims to predict and determine whether weather and climate variables with their measuring indicators can predict changes in SST by comparing daily and monthly data. This study uses a partial least square-structural equation modeling (PLS-SEM) approach which can predict the causality relationship between exogenous latent variables and endogenous latent variables. The results obtained from this study are, from the nine indicators used there are only 6 significant indicators with a loading factor value > 0.7, namely sea surface temperature (oC) as a measure of latent variables SST changes, wind speed (m/s) and humidity relative (%) as a measure of the latent variable of weather, and air temperature (oC), short-wave solar radiation (w/m2) for daily data, and long-wave solar radiation (w/m2) for monthly data as a measure of climate latent variable. Inner model obtained on daily data: SST change (η) = -0.285 weather + 0.650 climate + and on monthly data SST change (η) = -0.330 weather + 0.793 climate +. In monthly data, weather and climate latent variables and their measuring indicators have a greater influence on changes in SST with the coefficient values in the model obtained being greater than in daily data. Latent variables that have a significant effect on changes in SST are weather and climate. This shows that if there is an increase or decrease in weather and climate it can cause significant changes to the SST. The value of the criteria on the outer model and inner model on daily and monthly data obtained better results on monthly data. The presence of more missing data in daily data can be one of the causes of this happening.

Keywords


Sea Surface Temperature; Partial Least Square; Weather; Climate; Outer Model; Inner Model

Full Text:

PDF

References


W. R. Reynolds, A. N. Rayner, M. T. Smith, C. D. Stokes, and W. Wang, “An improved in situ and satellite SST analysis for climate,” Journal of climate., vol. 15, no. 13, pp. 1609-1625, 2002.

J. Julismin, “Dampak dan Perubahan Iklim di Indonesia,” Jurnal Geografi., vol. 5, no.1, pp. 39-46, 2013.

D. M. Syaifullah, “Suhu Permukaan Laut Perairan Indonesia dan Hubungannya dengan Pemanasan Global,” Jurnal Segara., vol. 11, no. 2, pp. 103-113, 2015.

A. D. B. Nugroho, “Relationships between Sea Surface Temperature (SST) and rainfall distribution pattern in South-Central Java, Indonesia,” Indonesian Journal of Geography., vol. 47, no.1, pp. 20-25, 2015.

L. Zahroh, and M. B. Sujoko, “Analisa suhu permukaan laut untuk penentuan daerah potensi ikan menggunakan citra satelit modis level 1B,” J. Teknik ITS., vol. 5, no. 2, pp. A846-A849, 2016.

S. Haryono, and P. Wardoyo, Structural equation modelling, Bekasi: PT Intermedia Personalia Utama, 2012.

M. Hijrah, B. Susetyo, and B. Sartono, “Structural equation modeling of national standard education of vocational high school using partial least square path modeling” International Journal of Scientific Research in Science Engineering and Technology, 2018, pp. 1418-1422.

H. Kurniawan, “Partial Least Square (PLS) Sebagai Metode Alternatif SEM Berbasis Varians (LISREL) dalam Eksplorasi Data Survey dan Data Mining,” Jurnal Telematika, vol. 7, no. 1, pp. 3-6, 2011.

I. Ghozali, Structural Equation Modeling Metode Alternatif dengan Partial Least Square (PLS) Dilengkapi Software SmartPLS 3.00 Xistat 2014 dan WarpPLS 4.0, Edisi ke-4. Semarang: Badan Penerbit Universitas Diponegoro Semarang, 2014.

J.F. Hair, CM. Ringle, M. Sarstedt, “PLS-SEM: Indeed a silver bullet,” Journal of Marketing Theory and Practice, vol. 19, no. 2, pp. 139-151, 2011.

WW. Chin, “How to write up and report PLS analyses”, In Vinzi VE, WW. Chin, J. Henseler, H. Wang, “Handbook of Partial Least Squares: Concepts, Methods, and application,” Vinzi VE, WW. Chin, J. Henseler, H. Wang. Jerman, pp. 645-689. Springer, 2010.

N. U. E. Sholiha, “(Structural equation modeling-partial least square untuk pemodelan derajat kesehatan kabupaten/kota di Jawa Timur (studi kasus data indeks pembangunan kesehatan masyarakat Jawa Timur 2013)”, Institut Teknologi Sepuluh Nopember, 2015.

S. Yamin, dan H. Kurniawan, Regresi dan Korelasi Dalam Genggaman Anda. Jakarta: Penerbit Salemba Empat, 2011.

H. Latan, Model Persamaan Struktural Teori dan Implementasi AMOS 21.0, Bandung: Alfabeta, 2013.

N. S. Akalili, “Analisis Pengaruh Tenaga Penjualan (Marketer) terhadap Kepuasan dan Pengaruh Kepuasan terhadap Rekomendasi di Perumahan "X" dengan Metode Structural Equation Modeling-Partial Least Square,” ITS Surabaya, 2014.

S. Akter, P. Ray, and J. D’Ambra, “An evaluation of PLS based complex models: The roles of Power Analysis, Predictive Relevance and GOF index,” in Proceedings of the 17th Americas Conference on Information Systems (AMCIS2011) Detroit.USA, 2017, pp. 1-7.




DOI: https://doi.org/10.34312/jjom.v4i1.11191



Copyright (c) 2022 Retno Wahyuni Putri, Miftahuddin Miftahuddin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (p-ISSN: 2654-5616 | e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office 

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo, Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia. Email: info.jjom@ung.ac.id.