Studi Longitudinal Pada Analisis Data Gula Darah Pasien Diabetes melalui Principal Component Analysis

Anna Islamiyati, Sitti Sahriman, Sakinah Oktoni

Abstract


Multicollinearity is a relationship or correlation between predictor variables. Multicollinearity can also occur in longitudinal data, which is a combination of cross-section data and time-series data. The impact of multicollinearity causes the influence of the predictor variable on the response variable to be insignificant, the least-squares estimator, and the error to be sensitive to changes in the data. Therefore, the procedure to overcome multicollinearity uses the principal component analysis method. This study aims to model PCA longitudinal data regression with a fixed-effect model that is applied to blood sugar data of diabetic patients with a time span of January 2019 to July 2019 at Ibnu Sina Hospital Makassar City. The results of this study indicate that there are two main components formed from PCA longitudinal data regression modelling with a fixed-effect model. Obtained variable values are systolic blood pressure of -0.007, diastolic blood pressure of -0,016, the body temperature of -0.098, and platelets of 0.005 which affect blood sugar in patients with diabetes.

Keywords


Multicollinearity; Longitudinal Data; Principal Component Analysis; Diabetes Data; Fixed Effect Model

Full Text:

PDF

References


P. I. G. D. I. Putra, P. A. I. Wirawati, dan N. N. Mahartini, ’’Hubungan Kadar Gula Darah dengan Hipertensi Pada Pasien Diabetes Melitus Tipe 2 di RUSP Sanglah,’’ Directory of Open Access Journals., vol. 10, no. 3, 2019.

Kemenkes, Infodatin Pusat Data dan Informasi Kementerian Kesehatan RI, Jakarta: Kementerian Kesehatan Republik Indonesia, 2020.

RISKESDAS, Laporan Provinsi Sulawesi Selatan RISKESDAS 2018, Jakarta: Badan Penelitian dan Pengembangan Kesehatan, 2019.

Z. A. Ramdhani, A. Islamiyati dan R. Raupong, ’’Hubungan Faktor Kolestrol Terhadap Gula Darah Diabetes dengan Spline Kubik Terbobot,’’ Jurnal Estimasi., vol.1, no.1, 2020.

D. R. Ente, A. Islamiyati, dan R. Raupong, ’’Pengaruh Indeks Massa Tubuh dan Trigliserida Terhadap Gula Darah dengan Model Regresi Nonparametrik Spline Bipreditor,’’ Jurnal Estimasi., vol. 2, no. 2, 2021.

A. Islamiyati, F. Fatmawati and N. Chamidah, ’’Changes in blood glucose 2 hours after meals in Type 2 diabetes patients based on length of treatment at Hasanuddin University Hospital, Indonesia,’’ Rawal Medical Journal., vol. 45, no. 1, 2020.

I. Ana, ’’Analisis Metode Principal Component Analysis (Komponen Utama) dan Regresi Ridge dalam Mengatasi Dampak Multikolinearitas dalam Analisis Regresi Linier Berganda,’’ Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang, 2011

Soemartini, ’’Principal Component Analysis (PCA) Sebagai Satu Metode untuk Mengatasi Masalah Multikolinearitas,’’ Matematika dan Ilmu Pengetahuan Alam, Universitas Padjajaran, Jatinangor, 2008.

M. Gresyea L, W. Henry J, dan L. Yopi A, ’’Analisis Regresi Komponen Utama Untuk Mengatasi Masalah Multikolinieritas Dalam Analisis Regresi Linear Berganda,’’ BAREKENG: Jurnal Ilmu Matematika dan Terapan., vol. 6, no. 1, 2012.

D. M. S. N. Van, W. Abraham Z, dan S. Susanti, ’’Penggunaan Metode Analisis Komponen Utama untuk Mereduksi Faktor-Faktor Inflasi di Kota Ambon,’’ Jurnal Ilmu Matematika dan Terapan., vol. 11, no. 2, 2017.

Y. Safaat dan P. Ully, ’’Analisis Komponen Utama untuk Pengelompokan Area Pelayanan dan Jaringan Daerah Jawa Tengah dan D.I. Yogyakarta,’’ Jurnal Jasdm., vol. 1, no. 1, 2019.

D. Peter, H. Patrick., L. K. Yee, and Z. Scott , Analysis of Longitudinal Data, Second Edition. Oxford: Oxford University Press, 2013.

G. Muhammad dan O. W. Bambang, ’’Pemodelan Fixed Effect Pada Regresi Data Longitudinal dengan Estimasi Generalized Method of Moments (Studi Kasus Data Penduduk Miskin di Indonesia),’’ Jurnal Statistika., vol. 9, no. 1, 2016.

F. Nurul, Mawardi, dan K. A. Rizmahardian,’’Korelasi Keterampilan Metakognisi dengan Aktivitas dan Hasil Belajar Siswa,’’ Ar-Razi Jurnal Ilmiah., vol. 5, no. 1, 2017.

J. I. T, Principal Component Analysis, New York: Springer-Verlag New York, Inc, 2002.

S. Arifin, A. Islamiyati, dan R. Raupong, ’’Kemampuan Estimator Spline Linier Dalam Analisis Komponen Utama,’’ Jurnal Estimasi., vol. 1, no. 1, 2020.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, Sixth Edition. New Jersey: Printice Hall of India Private Limited, 2007.




DOI: https://doi.org/10.34312/jjom.v4i1.11407



Copyright (c) 2022 Anna Islamiyati, Sitti Sahriman, Sakinah Oktoni

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (p-ISSN: 2654-5616 | e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office 

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo, Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia. Email: info.jjom@ung.ac.id.