Pemodelan Geographically Weighted Logistic Regression dengan Fungsi Adaptive Gaussian Kernel Terhadap Kemiskinan di Provinsi NTT

Novia Amilatus Solekha, Mohammad Farhan Qudratullah

Abstract


The Geographically Weighted Logistic Regression (GWLR) model is a logistic regression model development that is applied to spatial data from non-stationary processes. This model is used to predict a model of the data set that has a binary response variable which takes into account the spatial factor. This study will discuss the use of the GWLR model using the adaptive weighting function of the Gaussian kernel in a poverty case study in East Nusa Tenggara Province in 2019.The parameter estimation of the Maximum Likelihood Estimation (MLE) method by giving different weights for each observation location. The weight used is the adaptive Gaussian kernel with the optimum bandwidth selection using the Cross-Validation (CV). Based on the results of testing the parameters of the GWLR model with a weighted adaptive Gaussian kernel, it can be concluded that the factors that influence poverty are local and vary in the 22 observation locations, including GRDP per capita, acceptance of smart Indonesian programs, and projected population growth rates, with a classification accuracy rate of 81,82%.

Keywords


Adaptive Gaussian Kernel; GWLR; Logistic Regression; MLE; Poverty

Full Text:

PDF

References


M. F. Qudratullah, Analisis Regresi Terapan: Teori, Contoh Kasus dan Aplikasi dengan SPSS, (Ed.1). Yogyakarta: CV Andi Offset, 2013.

M. Fathurahman, Purhadi, Sutikno, and V. Ratnasari, "Pemodelan Geographically Weighted Logistic Regression pada Indeks Pembangunan Kesehatan Masyarakat di Provinsi Papua," in Prosiding Seminar Nasional MIPA, 2016, pp. 34-42.

F. D. Lestari, Kusnandar. D, and N. N. Debataraja, "Estimasi Parameter Model Geographically Weighted Logistic Regression," Buletin Ilmiah Mat.Stat. dan Terapannya (Bimaster)., vol. 09, no. 1, pp.159-164, 2020.

Wulandari, "Geographically Weighted Logistic Regression dengan Fungsi Kernel Fixed Gaussian pada Kemiskinan Jawa Tengah," Indonesian Journal of Statistics and its Application, vol.2. no. 2, pp.101-112, Nov. 2018.

A. S. Fotheringham, C. Brunsdon, and M. E. Charlton, "Geographically Weighted Regression: The Analysis of Spatial Varying Relationship". Chichester: John Wiley dan Sons Ltd. 2002.

R. E. Caraka, and H. Yasin, Geographically Weighted Regression (GWR); Sebuah Pendekatan Regresi Geografis, (Ed.1. Cet. Ke – 1). Yogyakarta: Mobius,2017.

P. M. Atkinson, S. E. German, D.A. Sear, and M. J. Clark, "Exploring The Relations Between Riverbank Erosion And Geomorphological Controls Using Geographically Weighted Logistic Regression". Ohio State University, Ohio 2003.

N. Meilani, "Model Regresi Logistik Terboboti Geografis Menggunakan Kernel Gaussian dan Kernel Bisquare," Universitas Gadjah Mada, Yogyakarta, 2017.

A. Dwinata, "Model Regresi Logistik Terboboti Geografis,"Institut Pertanian Bogor, Bogor, 2012.

BPS, "Indikator Ekonomi Provinsi Nusa Tenggara Timur 2019". Nusa Tenggara Timur: Badan Pusat Statistik, 2019.

R. Amelia and W. Rindayati, "Analisis Faktor-faktor yang Mempengaruhi Kemiskinan di Provinsi Nusa Tenggara Timur," Universitas Pertanian Bogor, Bogor, 2012.

R. Hatta, and R. Khoirudin, " Analisis Tingkat Kemiskinan di Propinsi NTT: Pendekatan Data Panel," Jurnal Samudra Ekonomi dan Bisnis. vol. 11, no. 2, pp 138-150, 2020.

C. Mustika. "Pengaruh PDB dan Jumlah Penduduk Terhadap Kemiskinan di Indonesia Periode 1990-2008," Jurnal Paradigma Ekonomika, vol. 1, no. 4, pp:12-23, 2011.

M. Kuncoro, Otonomi dan Pembangunan Daerah. Erlangga: Jakarta, 2004.

M. Maliangga, E. N. Walewangko. and A. T. Londa, "Pengaruh Kebijakan Pemerintah Kartu Indonesia Pintar (PIP) Dan Kartu Indonesia Sehat (KIS) Terhadap Konsumsi Rumah Tangga Miskin di Kecamatan Dumoga Timur Kabupaten Bolaang Mongondow," Jurnal Berkala Ilmiah Efisiensi, vol. 19. no .01, pp.32-43, 2019.

U. D. Marut. "Aspek Sosial dan kaitannya dengan masalah kurang gizi di kabupaten manggarai, NTT," Jurnal gizi dan pangan, vol. 2 no. 3, pp: 36-43. 2017.

D. W. Hosmer, and S. Lemeshow, Applied Logistic Regression. USA: John Wliey & Sons, 2000.

L. Anselin, " Spatial Econometrics: Methods and Models. Handbook of Applied Economics Statistics," Marcel Dekker : New York, pp. 237-289.1998.

C. Chasco, I. Garcia, and J. Vicens, "Modeling Spatial Variations in Household Disposable Income with Geographically Weighted Regression," Munich Personal RePEc Archive Paper, no. 1682. 2017.

M. F. Qudratullah. "Misklasifikasi Mahasiswa Baru F Saintek UIN Sunan Kalijaga Jalur Tes Tulis Dengan Analisis Regresi Logistik." Jurnal CAUCHY, vol. 1, no. 4. pp. 175-181, 2011.




DOI: https://doi.org/10.34312/jjom.v4i1.11452



Copyright (c) 2022 Novia Amilatus Solekha, Mohammad Farhan Qudratullah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (p-ISSN: 2654-5616 | e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office 

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo, Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia. Email: info.jjom@ung.ac.id.