Interval Kepercayaan Untuk Fungsi Nilai Harapan dan Fungsi Ragam Proses Poisson Periodik Majemuk

Auliya Fithry, I Wayan Mangku, I Gusti Putu Purnaba

Abstract


Compound cyclic Poisson process have the mean and variance functions. The objective of this paper is to construct confidence intervals for respectively the mean and variance functions of a compound cyclic Poisson process with significance level 0<alpha<1 and to do a simulation study to observe the probabilities that parameters are contained in the confidence intervals. We do not assume any parametric form for the intensity function except that it is periodic. We consider in the observed there is only one realization of the cyclic Poisson process in a bounded interval. The main results are two theory about confidence intervals for parameters. The simulation shows that the probability values of the observed parameters contained in the confidence intervals are in accordance with the theory.

Keywords


Compound Cyclic Poisson Process; Mean Function; Variance Function; Confidence Interval; Periodic Function

Full Text:

PDF

References


P. A. W. Lewis, “Recent Results in the Statistical Analysis of Univariate Point Processes,” in Stochastic Point Processes: Statistical Analysis, Theory, and Applications, L. PAW, Ed., 1971.

R. F. Engle, “The Econonometrics of Ultra-High-Frequency Data,” Econometrica, vol. 1, no. 68, pp. 1–19, 1996.

E. Belitser, P. Serra, and H. van Zanten, “Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes,” Journal of Statistical Planning and Inference, vol. 166, pp. 24–35, nov 2015, doi: http://dx.doi.org/10.1016/j.jspi.2014.03.009.

J. Byrne, “Properties of compound poisson processes with applications in statistical physics,” Physica, vol. 41, no. 4, pp. 575–587, mar 1969, doi: http://dx.doi.org/10.1016/0031-8914(69)90096-2.

S. R. Kegler, “Applying the compound Poisson process model to the reporting of injury-related mortality rates,” Epidemiologic Perspectives and Innovations, vol. 4, no. 1, pp. 1–9, 2007, doi: http://dx.doi.org/10.1186/1742-5573-4-1.

G. Ozel and C. Inal, “The probability function of the compound Poisson process and an application to aftershock sequence in Turkey,” Environmetrics, vol. 19, no. 1, pp. 79–85, feb 2008, doi: http://dx.doi.org/10.1002/env.857.

V. E. Bening and V. Y. Korolev, Generalized Poisson Models and their Applications in Insurance and Finance. Boston: VSP Internasional Science, 2002.

P. Puig and J. F. Barquinero, “An application of compound Poisson modelling to biological dosimetry,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 467, no. 2127, pp. 897–910, mar 2011, doi: http://dx.doi.org/10.1098/rspa.2010.0384.

P. Kruczek, M. Polak, A. Wyłomanska, W. Kawalec, and R. Zimroz, “Application of compound Poisson process for modelling of ore flow in a belt conveyor system with cyclic loading,” International Journal of Mining, Reclamation and Environment, vol. 32, no. 6, pp. 376–391, aug 2018, doi: http://dx.doi.org/10.1080/17480930.2017.1388335.

I. R. Adriani, “Sebaran Asimtotik Penduga Fungsi Nilai Harapan dan Fungsi Ragam pada Proses Poisson Periodik Majemuk,” IPB University, IPB University, Tech. Rep., 2019.

I. W. Mangku, R. Ruhiyat, and I. G. P. Purnaba, “Statistical Properties of An Estimator for the Mean Function of A Compound Cyclic Poisson Process,” Far East J. Math. Sci., vol. 82, no. 2, pp. 227–237, 2014.

R. Ruhiyat, I. W. Mangku, and I. G. P. Purnaba, “Consistent Estimation of the Mean Function of A Compound Cyclic Poisson Process,” Far East J. Math. Sci., vol. 77, no. 2, pp. 183–194, 2013.

F. I. Makhmudah, I. W. Mangku, and H. Sumarno, “Estimating the Variance Function of A Compound Cyclic Poisson Process,” Far East Journal of Mathematical Sciences (FJMS), vol. 100, no. 6, pp. 911–922, sep 2016, doi: http://dx.doi.org/10.17654/MS100060911.

A. Fajri, “Selang kepercayaan fungsi nilai harapan dan fungsi ragam proses poisson majemuk dengan intensitas fungsi pangkat,” IPB University, Tech. Rep., 2017.

S. Utami, “Interval Kepercayaan Fungsi Nilai Harapan dan Fungsi Ragam Proses Poisson Majemuk dengan Intensitas Eksponesial Fungsi Linear,” IPB University, Tech. Rep., 2018.

R. Helmers, I. Wayan Mangku, and R. Zitikis, “Consistent estimation of the intensity function of a cyclic Poisson process,” Journal of Multivariate Analysis, vol. 84, no. 1, pp. 19–39, jan 2003, doi: http://dx.doi.org/10.1016/S0047-259X(02)00008-8.

R. V. Hoog, J. W. Mckean, and A. T. Craig, Introduction to Mathematical Statistics, 8th ed. New York: Pearson Education Inc., 2019.




DOI: https://doi.org/10.34312/jjom.v4i1.12180



Copyright (c) 2022 Auliya Fithry, I Wayan Mangku, I Gusti Putu Purnaba

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (p-ISSN: 2654-5616 | e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office 

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo, Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia. Email: info.jjom@ung.ac.id.