Model Regresi Kuantil Spline Orde Dua Dalam Menganalisis Perubahan Trombosit Pasien Demam Berdarah

Anisa Anisa, Anna Islamiyati, Sitti Sahriman, Jusmawati Massalesse, Bunga Aprilia

Abstract


Quantile regression can be used to analyze data containing outliers including DHF data. The spline is able to identify several patterns of change in the regression model, so this study uses a second-order quantile spline regression model in analyzing DHF data that occurred in Makassar City. In this article, the authors analyze the pattern of changes that occur in platelets based on changes in the hematocrit content of DHF patients. The selected quantiles are quartiles 0.25; 0.50; and 0.75 with 3-knot points. Based on the results of the analysis, the minimum GCV value obtained at the use of knot points is 30.30; 44.80; 47.10 for the 0.25 quartile; 0.50; and 0.75. This shows that in each quartile, there are four patterns of quadratic changes that occur in the platelet count of DHF patients. The parabolic curve formed in each pattern segmentation shows that there are times when platelets are increasing and there are times when platelets are decreasing. However, the average platelets decreased drastically, especially when the hematocrit reached 47.10%.

Keywords


Hematocrit; Quantile Regression; Second Order Spline; Platelets

Full Text:

PDF

References


F. Yanuar, H. Yozza, and I. Rahmi, “Penerapan Metode Regresi Kuantil pada Kasus Pelanggaran Asumsi Kenormalan Sisaan,” Eksakta, vol. 1, pp. 33–37, 2016.

M. Furno, “Parameter instability in quantile regression,” Statistical Modelling, vol. 7, no. 4, pp. 345–362, dec 2007, doi: 10.1177/1471082X0700700405.

M. Y. Matdoan and A. M. Balami, “Estimasi Parameter Regresi Kuantil dengan Fungsi Spline Truncated Pada Kasus Demam Berdarah Dengue di Kota Surabaya,” Jurnal MSA ( Matematika dan Statistika serta Aplikasinya ), vol. 7, no. 1, p. 44, aug 2019, doi: 10.24252/msa.v7i1.7511.

N. Idris, R. Rais, and I. T. Utami, “Aplikasi Regresi Kuantil pada Kasus DBD di Kota Palu Sulawesi Tengah,” Jurnal Ilmiah Matematika dan Terapan, vol. 5, no. 1, pp. 108–117, 2018.

W. N. A. Puteri, A. Islamiyati, and A. Anisa, “Penggunaan Regresi Kuantil Multivariat pada Perubahan Trombosit Pasien Demam Berdarah Dengue,” ESTIMASI: Journal of Statistics and Its Application, vol. 1, no. 1, pp. 1–9, feb 2020, doi: 10.20956/ejsa.v1i1.9224.

Z. A. Ramdhani, A. Islamiyati, and R. Raupong, “Hubungan Faktor Kolestrol Terhadap Gula Darah Diabetes dengan Spline Kubik Terbobot,” ESTIMASI: Journal of Statistics and Its Application, vol. 1, no. 1, pp. 32–39, jan 2020, doi: 10.20956/ejsa.v1i1.9252.

N. Chamidah and B. Lestari, “Estimation of covariance matrix using multi-response local polynomial estimator for designing children growth charts: A theoretically discussion,” Journal of Physics: Conference Series, vol. 1397, no. 1, p. 012072, dec 2019, doi: 10.1088/1742-6596/1397/1/012072.

N. Chamidah and T. Saifudin, “Estimation of children growth curve based on kernel smoothing in multi-response nonparametric regression,” Applied Mathematical Sciences, vol. 7, no. 37, pp. 1839–1847, 2013, doi: 10.12988/ams.2013.13168.

M. F. F. Mardianto, E. Tjahjono, and M. Rifada, “Statistical modelling for prediction of rice production in Indonesia using semiparametric regression based on three forms of fourier series estimator,” ARPN Journal of Engineering and Applied Sciences, vol. 14, no. 15, 2019.

A. Islamiyati, Raupong, A. Kalondeng, and U. Sari, “Estimating the confidence interval of the regression coefficient of the blood sugar model through a multivariable linear spline with known variance,” Statistics in Transition New Series, vol. 23, no. 1, pp. 201–212, mar 2022, doi: 10.2478/stattrans-2022-0012.

A. Islamiyati, A. Kalondeng, N. Sunusi, M. Zakir, and A. K. Amir, “Biresponse nonparametric regression model in principal component analysis with truncated spline estimator,” Journal of King Saud University - Science, vol. 34, no. 3, p. 101892, apr 2022, doi: 10.1016/j.jksus.2022.101892.

A. Islamiyati, F. Fatmawati, and N. Chamidah, “Use of Two Smoothing Parameters in Pelanized Spline Estimator for Bi-Variate Predictor Non-Parametric Regression Model,” Journal of Science, Islamic of Republic Iran, vol. 31, no. 2, pp. 175–183, 2020, doi: https://doi.org/10.22059/jsciences.2020.286949.1007435.

B. Lestari, Fatmawati, I. N. Budiantara, and N. Chamidah, “Smoothing parameter selection method for multiresponse nonparametric regression model using smoothing spline and Kernel estimators approaches,” Journal of Physics: Conference Series, vol. 1397, no. 1, p. 012064, dec 2019, doi: 10.1088/1742-6596/1397/1/012064.

N. Jao, A. Islamiyati, and N. Sunusi, “Pemodelan Regresi Nonparametrik Spline Poisson pada Tingkat Kematian Bayi di Sulawesi Selatan,” Estimasi: Journal of Statistics and Its Application, vol. 3, no. 1, pp. 14–22, 2022, doi: https://doi.org/10.20956/ejsa.vi.11997.

R. A. Marrie, N. V. Dawson, and A. Garland, “Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables,” Journal of Clinical Epidemiology, vol. 62, no. 5, pp. 511–517.e1, may 2009, doi: 10.1016/j.jclinepi.2008.05.015.

B. Aprilia, A. Islamiyati, and A. Anisa, “Platelet Modeling Based On Hematocrit in DHF Patients with Spline Quantile Regression,” International Journal of Academic and Applied Research (IJAAR), vol. 3, no. 12, pp. 51–54, 2019.

A. Islamiyati, “Regresi Spline Polynomial Truncated Biprediktor untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue,” Al-Khwarizmi: Jurnal Pendidikan Matematika dan Ilmu Pengetahuan Alam, vol. 7, no. 2, pp. 97–112, oct 2019, doi: 10.24256/jpmipa.v7i2.799.

S. F. Nisai and I. N. Budiantara, “Analisis Survival dengan Pendekatan MARS pada Kasus DBD,” Jurnal Sains dan Seni ITS, vol. 1, no. 1, pp. 318–323, 2012, doi: https://doi.org/10.24252/msa.v5i2.4511.




DOI: https://doi.org/10.34312/jjom.v5i1.16086



Copyright (c) 2023 Anisa Anisa, Anna Islamiyati, Sitti Sahriman, Jusmawati Massalesse, Bunga Aprilia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.