Invers Moore-Penrose pada Matriks Turiyam Simbolik Real

Ani Ani, Mashadi Mashadi, Sri Gemawati

Abstract


The symbolic Turiyam matrix is a matrix whose entries contain symbolic Turiyam. Inverse matrices can generally be determined if the matrix is a non-singular square matrix. Currently the inverse of the symbolic Turiyam matrix of size m × n with m 6= n can be determined by the Moore-Penrose inverse. The purpose of this research is to determine the inverse Moore-Penrose algorithm on a real symbolic Turiyam matrix of size m × n with m 6= n. Algebraic operations on symbolic Turiyam is a method used to obtain the Moore-Penrose inverse on real symbolic Turiyam matrices by applying symbolic Turiyam algebraic operations on the concept of Moore-Penrose inverses. The main result obtained is the inverse Moore-Penrose algorithm on the real symbolic Turiyam matrix. The demonstration example given shows that the Moore-Penrose inverse on a real symbolic Turiyam matrix always exists even though the matrix is not a square matrix.

Keywords


Inverse Moore-Penrose; Turiyam Matrix Simbolic

Full Text:

PDF

References


H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version, 11th ed. New Jersey: John Wiley and Sons, Inc., 2013.

S. Syarifuddin, M. Mikrayanti, and M. Muslim, Aljabar Linear, M. Z. Aminy and S. Sudarsono, Eds. Mataram: LPP Mandala, 2016.

R. Macausland, The Moore-Penrose Inverse and Least Squares. Tacoma, Washington: University of Puget Sound, 2014.

T. Britz, “The Moore-Penrose inverse of a free matrix,” The Electronic Journal of Linear Algebra, vol. 16, pp. 208–215, jan 2007, doi: 10.13001/1081-3810.1196.

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, ser. CMS Books in Mathematics. New York: Springer-Verlag, 2003, doi: 10.1007/b97366.

P. K. Singh, “Turiyam Set a Fourth Dimension Data Representation,” Journal of Applied Mathematics and Physics, vol. 09, no. 07, pp. 1821–1828, 2021, doi: 10.4236/jamp.2021.97116.

H. Yanai, K. Takeuchi, and Y. Takane, Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. New York, NY: Springer New York, 2011, doi: 10.1007/978-1-4419-9887-3.

L. Salaka, H. W. M. Patty, and M. W. Talakua, “Sifat-Sifat Dasar Matriks Skew Hermitian,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 7, no. 2, pp. 19–26, dec 2013, doi: 10.30598/barekengvol7iss2pp19-26.

P. Courrieu, “Fast Computation of Moore-Penrose Inverse Matrices,” Neural and Evolutionary Computing, vol. 8, no. 2, pp. 25–29, 2008, doi: https://doi.org/10.48550/arXiv.0804.4809.

P. K. Singh, K. D. Ahmad, M. Bal, and M. Aswad, “On The Symbolic Turiyam Rings,” Journal of Neutrosophic and Fuzzy Systems, p. 03559108, 2021, doi: 10.54216/JNFS.010204.

A. A. Basheer, K. D. Ahmad, and R. Ali, “Symbolic Turiyam Groups,” Preprint Paper, pp. 30–43, 2022, doi: 10.13140/RG.2.2.28244.07045.

S. Suroto, “Invers Moore-Penrose pada Matriks Atas Aljabar Max-Plus Tersimetri,” Teorema: Teori dan Riset Matematika, vol. 6, no. 2, pp. 198–209, sep 2021, doi: 10.25157/teorema.v6i2.5514.

A. A. Basheer, K. D. Ahmad, and R. Ali, “An Introduction to The Symbolic Turiyam Groups and AH-Substructures,” Journal of Neutrosophic and Fuzzy Systems, vol. 3, no. 2, pp. 43–52, 2022, doi: 10.54216/JNFS.030205.

M. Bal, P. K. Singh, and K. D. Ahmad, “A Short Introduction To The Concept Of Symbolic Turiyam Matrix,” Journal of Neutrosophic and Fuzzy Systems, vol. 2, pp. 88–99, 2022, doi:10.54216/JNFS.020108.

M. Bal, P. K. Singh, and K. D. Ahmad, “An Introduction To The Symbolic Turiyam R-Modules and Turiyam Modulo

Integers,” Journal of Neutrosophic and Fuzzy Systems, pp. 8–19, 2022, doi: 10.54216/JNFS.020201.

P. K. Singh, “Four Way Human Quantum Turiyam Cognition Analysis,” Journal of Artificial Intelligence and Technology, vol. 2, no. 4, pp. 1–8, aug 2022, doi: 10.37965/jait.2022.0123.

Y. Yanti, H. Helmi, and M. Kiftiah, “Invers Moore-Penrose Sebagai Invers Matriks,” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 8, no. 4, pp. 951–958, oct 2019, doi: 10.26418/bbimst.v8i4.36731.

S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations. Society for Industrial and Applied Mathematics, jan 2009, doi: 10.1137/1.9780898719048.




DOI: https://doi.org/10.34312/jjom.v5i1.16304



Copyright (c) 2023 Ani Ani, Mashadi Mashadi, Sri Gemawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.