Peramalan Data Cuaca Ekstrim Indonesia Menggunakan Model ARIMA dan Recurrent Neural Network

Hikmah Hikmah, Asrirawan Asrirawan, Apriyanto Apriyanto, Nilawati Nilawati

Abstract


Extreme weather modeling is a challenge for modeling experts in Indonesia and the world. Extreme weather prediction is a complex problem because the chances of it happening are very small, so the developed models often have a low level of accuracy. The purpose of this research is to combine the classic model, Autoregressive Integrated Moving Average (ARIMA), recurrent neural network (RNN) model using Adam and SGD estimation (RNN-Adam and RNN-SGD) with the reLU, tanh, sigmoid and gaussian activation functions. In addition, the ARIMA-RNN mix model was also demonstrated in this study. These models are applied to monthly period extreme weather data obtained from the Meteorology, Climatology and Geophysics Agency (BMKG) of West Sulawesi Province which are converted into training data and test data. The RMSE value is used to see the level of prediction accuracy in both training data and test data. Based on the research results, the best model obtained for modeling Indonesia’s extreme weather is the ARIMA-RNN-Adam mix model with the reLU activation function based on the RMSE value on the training and test data. At n = 50, the smallest RMSE and MSE values of the third model are the ARIMA-RNN-Adam model which is 0.23212 using the reLU activation function, then the ARIMA-RNN-SGD model which is 0.25432 with the same activation function, while the ARIMA value is 0.3270. At n=100 it can be seen that the smallest RMSE and MSE values of the three models are the ARIMA-RNN-Adam model which is equal to 0.25149 using the reLU activation function, then the ARIMA-RNN-SGD model which is equal to 0.25256 with the same activation function, while the ARIMA value is 0.2644.


Keywords


Extreme Weather; Activation Function; ARIMA; RNN-Adam; RNN-SGD

Full Text:

PDF

References


V. A. Dihni, “BNPB: Kejadian Bencana Alam Indonesia Capai 3.058 Sepanjang 2021,” 2021, [Online] Available at: https://databoks.katadata.co.id/datapublish/2021/12/29/bnpb-kejadian-bencana-alam-indonesia-capai-3058-sepanjang-2021.

Y. W. A. Nanlohy, B. Sutijo, and S. Wulan, “Model Fungsi Transfer Multi Input Untuk Peramalan Curah Hujan di Kota Surabaya,” VARIANCE: Journal of Statistics and Its Applications, vol. 1, no. 2, pp. 82–92, 2019.

A. M. Priyatno, A. Wiratmo, F. Syuhada, and P. Cholidhazia, “Perbandingan Imputasi dan Parameter Support Vector Regression Untuk Peramalan Cuaca,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 10, no. 2, pp. 651–660, 2019, doi: https://doi.org/10.24176/simet.v10i2.3402.

O. Trisnawati and M. Prastuti, “Peramalan Curah Hujan di Stasiun Juanda Menggunakan Metode ARIMA Box-Jenkins dan Radial Basis Function Neural Network,” Jurnal Sains dan Seni ITS, vol. 11, no. 1, pp. D82–D88, feb 2022, doi: 10.12962/j23373520.v11i1.63165.

W. Fang, Q. Xue, L. Shen, and V. S. Sheng, “Survey on the Application of Deep Learning in Extreme Weather Prediction,” Atmosphere, vol. 12, no. 6, p. 661, may 2021, doi: 10.3390/atmos12060661.

J. M. Han, Y. Q. Ang, A. Malkawi, and H. W. Samuelson, “Using recurrent neural networks for localized weather prediction with combined use of public airport data and on-site measurements,” Building and Environment, vol. 192, p. 107601, apr 2021, doi: 10.1016/j.buildenv.2021.107601.

C. C. Wei, “Collapse Warning System Using LSTM Neural Networks For Construction Disaster Prevention In Extreme Wind Weather,” J. of Civ. Eng & Man., vol. 27, no. 4, pp. 230–245, apr 2021, doi: 10.3846/jcem.2021.14649.

N. Andini and W. H. Utomo, “Climate Prediction Using RNN LSTM to Estimate Agricultural Products Based on Koppen Classification,” JISA(Jurnal Informatika dan Sains), vol. 4, no. 2, pp. 96–99, dec 2021, doi: 10.31326/jisa.v4i2.911.

A. G. Salman and Y. L. Prasetio, “Implementasi Jaringan Syaraf Tiruan Recurrent Dengan Metode Pembelajaran Gradient Descent Adaptive Learning Rate Untuk Pendugaan Curah Hujan Berdasarkan Peubah Enso,” ComTech: Computer, Mathematics and Engineering

Applications, vol. 1, no. 2, pp. 418–429, dec 2010, doi: 10.21512/comtech.v1i2.2384.

A. G. Salman and B. Kanigoro, “Visibility Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Models,” Procedia Computer Science, vol. 179, pp. 252–259, 2021, doi: 10.1016/j.procs.2021.01.004.

W. Hariadi and S. Sulantari, “Aplication of ARIMA Model for Forecasting Additional Positive Cases of Covid-19 in Jember Regency,” Enthusiastic : International Journal of Applied Statistics and Data Science, vol. 1, no. 01, pp. 20–27, apr 2021, doi: 10.20885/enthusiastic.vol1.iss1.art4.

A. Mustapha, L. Mohamed, and K. Ali, “Comparative study of optimization techniques in deep learning: Application in the ophthalmology field,” Journal of Physics: Conference Series, vol. 1743, no. 1, p. 012002, jan 2021, doi: 10.1088/1742-6596/1743/1/012002.

S. S. W. Su and S. L. Kek, “An Improvement of Stochastic Gradient Descent Approach for Mean-Variance Portfolio Optimization Problem,” Journal of Mathematics, vol. 2021, pp. 1–10, mar 2021, doi: 10.1155/2021/8892636.

A. Hikmah, “Peramalan Deret Waktu Menggunakan Autoregressive (AR), Jaringan Syaraf Tiruan Radial Basis Function (RBF), dan Hibrid AR-RBF pada Inflasi Indonesia,” J. of Math., vol. 7, no. 2, pp. 1–14, 2013, doi: 10.15294/UJM.V7I2.13987.

A. F. Achmalia, W. Walid, and S. Sugiman, “Peramalan Penjualan Semen Menggunakan Backpropagation Neural Network dan Recurrent Neural Network,” J. of Math., vol. 9, no. 1, pp. 1–16, 2020, doi: 10.15294/UJM.V9I1.29970.

H. N. I. Hardiantho, “Analisis dan Implementasi Diferential Evolution dan Recurrent Neural Network untuk Prediksi Data Time Series Studi Kasus Kurs Jual Emas,” Skripsi, Universitas Telkom, 2011.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in 27th International Conference on Machine Learning (ICML-10), 2010, pp. 807–814.

K. K. Chandriah and R. V. Naraganahalli, “RNN / LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting,” Multimedia Tools and Applications, vol. 80, no. 17, pp. 26 145–26 159, jul 2021, doi: 10.1007/s11042-021-10913-0.

S. Mandt, M. D. Hoffman, and D. M. Blei, “Stochastic Gradient Descent as Approximate Bayesian Inference,” J. of Mach. Learn Res., vol. 18, no. 1, pp. 1–35, 2017, doi: 10.48550/arXiv.1704.04289.

C. Chen, N. Ding, and L. Carin, “On the convergence of stochastic gradient MCMC algorithms with high-order integrators,” in Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015, pp. 2269–2277.

A. Asrirawan, A. Seppewali, and N. Fitriyani, “Model Time Series untuk Prediksi Jumlah Kasus Infeksi Coronavirus (Covid-19) di Sulawesi Selatan,” Jurnal MSA ( Matematika dan Statistika serta Aplikasinya ), vol. 8, no. 2, pp. 77–82, dec 2020, doi: 10.24252/msa.v8i2.17427.

H. Haslina, H. Hasmah, K. W. Fitriani, M. Asbar, and A. Asrirawan, “Penerapan Metode ARIMA (Autoregressive Integrated Moving Average) Box Jenkins Untuk Memprediksi Pertambahan Jumlah Penduduk Transmigran (Jawa dan Bali) di Kecamatan Sukamaju, Kabupaten Luwu Utara Propinsi Sulawesi Selatan,” Dinamika, vol. 9, no. 1, pp. 55–67, 2018.

A. Asrirawan, Rahmawati, Hikmah, and M. Abdy, “Spatial Econometric Model for Mapping Poverty Area in West Sulawesi,” Journal of Physics: Conference Series, vol. 1752, no. 1, p. 012048, feb 2021, doi: 10.1088/1742-6596/1752/1/012048.

A. Asrirawan, S. U. Permata, and M. I. Fauzan, “Pendekatan Univariate Time Series Modelling untuk Prediksi Kuartalan Pertumbuhan Ekonomi Indonesia Pasca Vaksinasi COVID-19,” Jambura Journal of Mathematics, vol. 4, no. 1, pp. 86–103, jan 2022, doi: 10.34312/jjom.v4i1.11717.




DOI: https://doi.org/10.34312/jjom.v5i1.17496



Copyright (c) 2023 Hikmah Hikmah, Asrirawan Asrirawan, Apriyanto Apriyanto, Nilawati Nilawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.


 

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor