Analisis Sentimen Pengguna Twitter Menggunakan Support Vector Machine Pada Kasus Kenaikan Harga BBM

Rahadi Ramlan, Neva Satyahadewi, Wirda Andani

Abstract


Twitter is one of the social media with the most active users, which is 24 million active users. Information published on twitter contains comments from users on an object. Sentiment analysis is used to determine whether the data includes negative comments or positive comments because the comments taken on twitter are textual data. The method used in this sentiment analysis is Support Vector Machine (SVM) about public comments on fuel price increases on twitter. The comment data used was 258 data on September 4, 2022 because on that date it was exactly the day after the fuel price increase. First, preprocessing is done to remove unnecessary words or information. Then the data is divided into training data by 80% and testing data by 20%. The accuracy rate is 82.69%, sensitivity is 100%, and specificity is 79.07%. Then from the results of testing 52 data obtained the results of 43 negative comments and 9 positive comments so that it can be concluded that more people disagree with the increase in fuel prices.

Keywords


Comment; Twitter; Preprocessing; Sentiment; Support Vector Machine; Fuel Price

Full Text:

PDF

References


N. M. Ardani, “Studi komparatif reaksi pasar sebelum dan sesudah kenaikan harga bbm atas saham lq-45 di bei (even study pada peristiwa kenaikan bbm tanggal 5 januari 2017),” Jurnal Pendidikan Ekonomi Undiksha, vol. 10, no. 2, pp. 616–626, 2019, doi: 10.23887/jjpe.v10i2.20142.

J. C. Sihombing, “Kenaikan harga bbm : Jahat atau sepakat..???” 2022, [Online] Available: https://www.djkn.kemenkeu.go.id/kpknl-sidempuan/baca-artikel/15373/Kenaikan-Harga-BBM-Jahat-atau-Sepakat.htmlhttps://www.djkn.kemenkeu.go.id/kpknl-sidempuan/baca-artikel/15373/Kenaikan-Harga-BBM-Jahat-atau-Sepakat.html.

B. C. Sandy, D. Manongga, and A. Iriani, “Analisis sentimen terhadap kenaikan harga bahan bakar minyak (bbm) pada media online,” in Seminar Nasional & Konferensi Ilmiah Sistem Informasi, Informatika & Komunikasi, 2015, pp. 24–30, [Online] Available: https://publikasi.uyelindo.ac.id/index.php/semmau/article/view/56/35.

C. M. Annur, “Pengguna twitter di indonesia capai 24 juta hingga

awal 2023, peringkat berapa di dunia?” Databoks, 2023, [Online] Available: https://databoks.katadata.co.id/datapublish/2023/02/27/pengguna-twitter-di-indonesia-capai-24-juta-hingga-awal-2023-peringkat-berapa-di-dunia.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis sentimen terhadap layanan indihome berdasarkan twitter dengan metode klasifikasi support vector machine (SVM),” Jurnal Media Informatika Budidarma, vol. 4, no. 3, p. 650, jul 2020, doi: 10.30865/mib.v4i3.2181.

D. D. A. Yani, H. S. Pratiwi, and H. Muhardi, “Implementasi web scraping untuk pengambilan data pada situs marketplace,” Jurnal Sistem dan Teknologi Informasi (JUSTIN), vol. 7, no. 4, p. 257, oct 2019, doi: 10.26418/justin.v7i4.30930.

R. S. Karan, K. K. Shirsat, P. L. Kasar, and R. Chaudhary, “Sentiment analysis on twitter data: A new approach,” in 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). IEEE, mar 2018, doi: 10.1109/icctct.2018.8551169.

Y. A. Amrani, M. Lazaar, and K. E. E. Kadiri, “Random forest and support vector machine based hybrid approach to sentiment analysis,” Procedia Computer Science, vol. 127, pp. 511–520, 2018, doi: 10.1016/j.procs.2018.01.150.

A. M. Pravina, I. Cholisoddin, and P. P. Adikara, “Analisis sentimen tentang opini maskapai penerbangan pada dokumen twitter menggunakan algoritme support vector machine (svm),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2789–2797, 2019, [Online] Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4793/2232.

N. M. Ali, M. M. A. E. Hamid, and A. Youssif, “Sentiment analysis for movies reviews dataset using deep learning models,” International Journal of Data Mining & Knowledge Management Process (IJDKP), vol. 09, no. 03, pp. 19–27, may 2019, doi: 10.5121/ijdkp.2019.9302.

S. Styawati, N. Hendrastuty, and A. R. Isnain, “Analisis sentimen masyarakat terhadap program kartu prakerja pada twitter dengan metode support vector machine,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 6, no. 3, pp. 150–155, 2021, [Online] Available: http://ejournal.poltektegal.ac.id/index.php/informatika/article/view/2870.

K. M. O. Nahar, M. Al-Shannaq, A. Manasrah, R. Alshorman, and I. Alazzam, “A holy quran reader/reciter identification system using support vector machine,” International Journal of Machine Learning and Computing, vol. 9, no. 4, pp. 458–464, aug 2019, doi: 10.18178/ijmlc.2019.9.4.826.

J. Saranya and R. R. M.E, “Classification of benign and malignant tumour using svm,” International Journal of Recent Trends in Engineering & Research (IJRTER), vol. 05, no. Special Issue 07, pp. 105–110, mar 2019, doi: 10.23883/ijrter.conf.20190304.017.hrer2.

A. Priyanto and M. R. Maarif, “Implementasi web scrapping dan text mining untuk akuisisi dan kategorisasi informasi dari internet (studi kasus: Tutorial hidroponik),” Indonesian Journal of Information Systems, vol. 1, no. 1, pp. 25–33, aug 2018, doi: 10.24002/ijis.v1i1.1664.

W. Bourequat and H. Mourad, “Sentiment analysis approach for analyzing iPhone release using support vector machine,” International Journal of Advances in Data and Information Systems, vol. 2, no. 1, pp. 36–44, apr 2021, doi: 10.25008/ijadis.v2i1.1216.

S. Menaka and N. Radha, “Text classification using keyword extraction technique,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 12, pp. 734–740, 2013.

D. R. Manalu, M. C. L. Tobing, and M. Yohanna, “Analisis sentimen twitter terhadap wacana penundaan pemilu dengan metode support vector machine,” METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi, vol. 6, no. 6, pp. 149–156, oct 2022, doi: 10.46880/jmika.vol6no2.pp149-156.

O. Somantri, S. Wiyono, and D. Dairoh, “Metode k-means untuk optimasi klasifikasi tema tugas akhir mahasiswa menggunakan support vector machine (SVM),” Scientific Journal of Informatics, vol. 3, no. 1, pp. 34–45, jun 2016, doi: 10.15294/sji.v3i1.5845.

M. Belouch, S. E. Hadaj, and M. Idhammad, “Performance evaluation of intrusion detection based on machine learning using apache spark,” Procedia Computer Science, vol. 127, pp. 1–6, 2018, doi: 10.1016/j.procs.2018.01.091.

D. T. Wisudawati, T. W. Utami, and P. R. Arum, “Analisis sentimen terhadap dampak covid-19 pada performa tokopedia menggunakan support vector machine,” in Seminar Nasional Variansi, 2020.

A. P. Putra, N. N. Debataraja, and D. Kusnandar, “Tingkat akurasi klasifikasi jarak kelahiran di kampung keluarga berencana (kb) dengan metode support vector machine (svm),” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 9, no. 3, 2020, [Online] Available: https://jurnal.untan.ac.id/index.php/jbmstr/article/view/40891.

H. Yun, “Prediction model of algal blooms using logistic regression and confusion matrix,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 3, p. 2407, jun 2021, doi: 10.11591/ijece.v11i3.pp2407-2413.




DOI: https://doi.org/10.34312/jjom.v5i2.20860



Copyright (c) 2023 Rahadi Ramlan, Neva Satyahadewi, Wirda Andani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.