Klasifikasi Aljabar Lie Forbenius-Quasi Dari Aljabar Lie Filiform Berdimensi ≤ 5

Putri Nisa Pratiwi, Edi Kurniadi, Firdaniza Firdaniza

Abstract


In this research, we studied quasi-Frobenius Lie algebras and filiform Lie algebras of dimensions ≤ 5 over real field. The primary objective of this research is to classify the classification of filiform Lie algebras of dimensions ≤ 5 into quasi-Frobenius Lie algebras. The method employed in this research involves constructing a skew-symmetric 2-form in real Lie algebra, which also a nondegenerate 2-cocycle. The outcomes of this research reveal that there exists a class of filiform Lie algebras of dimensions $\le 5$ that can be classified as a quasi-Frobenius real Lie algebra. Furthermore, this research can be developed to classify higher dimensional filiform Lie algebras as quasi-Frobenius real Lie algebras.

Keywords


Filiform Lie algebra; Quasi-Frobenius Lie algebra; Nondegenerate 2-cocycle

Full Text:

PDF

References


L. Boza, E. Fedriani Martel, J. Valdés, and A. Tenorio, “A historical review of the classifications of Lie algebras,” Revista de la Unión Matemática Argentina, vol. 54, Oct. 2013.

J. M. Escobar, J. Núñez, and P. Pérez-Fernández, “Invariant functions and contractions of certain types of Lie algebras of lower dimensions,” Journal of Nonlinear Mathematical Physics, vol. 25, no. 3, p. 358, 2021, doi: 10.1080/14029251.2018.1494705.

M. Goze and J. Ancochea Bermudez, “On the varieties of nilpotent Lie algebras of dimension 7 and 8,” J Pure Appl Algebra, vol. 77, no. 2, pp. 131–140, Feb. 1992, doi: 10.1016/0022-4049(92)90080-Y.

J. R. Gómez, A. Jimenéz-Merchán, and Y. Khakimdjanov, “Low-dimensional filiform Lie algebras,” J Pure Appl Algebra, vol. 130, no. 2, pp. 133–158, Sep. 1998, doi: 10.1016/S0022-4049(97)00096-0.

L. Boza, E. M. Fedriani, and J. Núñez, “A new method for classifying complex filiform Lie algebras,” Appl Math Comput, vol. 121, no. 2–3, pp. 169–175, Jun. 2001, doi: 10.1016/S0096-3003(99)00270-2.

J. R. Gómez, A. Jiménez-Merchán, and Y. Khakimdjanov, “Symplectic structures on the filiform Lie algebras,” J Pure Appl Algebra, vol. 156, no. 1, pp. 15–31, Feb. 2001, doi: 10.1016/S0022-4049(99)90120-2.

D. Burde, “Characteristically nilpotent Lie algebras and symplectic structures,” Forum Mathematicum, vol. 18, no. 5, Jan. 2006, doi: 10.1515/FORUM.2006.038.

D. N. Pham, “g-quasi-Frobenius Lie algebras,” Archivum Mathematicum, no. 4, pp. 233–262, 2016, doi: 10.5817/AM2016-4-233.

G. Ovando, “Four dimensional symplectic Lie algebras,” Beitrage zur Algebra und Geometrie, vol. 47, Oct. 2004.

G. Bazzoni, M. Freibert, A. Latorre, and B. Meinke, “Complex symplectic structures on Lie algebras,” J Pure Appl Algebra, vol. 225, no. 6, p. 106585, Jun. 2021, doi: 10.1016/j.jpaa.2020.106585.

Y. Sheng and R. Tang, “Symplectic, product and complex structures on 3-Lie algebras,” J Algebra, vol. 508, pp. 256–300, Aug. 2018, doi: 10.1016/j.jalgebra.2018.05.005.

V. del Barco, “Symplectic structures on free nilpotent Lie algebras,” Proceedings of the Japan Academy, Series A, Mathematical Sciences, vol. 95, no. 8, Oct. 2019, doi: 10.3792/pjaa.95.88.

D. Millionshchikov, “Graded filiform Lie algebras and symplectic Nilmanifolds,” Amer. Math. Soc. Transl. Ser. 2, vol. 212, Sep. 2002.

D. V. Millionshchikov, “Deformations of filiform Lie algebras and symplectic structures,” Proceedings of the Steklov Institute of Mathematics, vol. 252, no. 1, pp. 182–204, Jan. 2006, doi: 10.1134/S0081543806010172.

A. McInerney, First Steps in Differential Geometry. in Undergraduate Texts in Mathematics. New York, NY: Springer New York, 2013. doi: 10.1007/978-1-4614-7732-7.

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, vol. 9. New York, NY: Springer New York, 1972. doi: 10.1007/978-1-4612-6398-2.




DOI: https://doi.org/10.37905/jjom.v6i1.22481



Copyright (c) 2024 Putri Nisa Pratiwi, Edi Kurniadi, Firdaniza Firdaniza

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.


 

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor