Struktur Simplektik pada Aljabar Lie Affine aff(2,R)

Aurillya Queency, Edi Kurniadi, Firdaniza Firdaniza

Abstract


In this research, we studied the affine Lie algebra aff(2,R). The aim of this research is to determine the 1-form in affine Lie algebra aff(2,R) which is associated with its symplectic structure so that affine Lie algebra aff(2,R) is a Frobenius Lie algebra. Realized the elements of the affine Lie algebra aff(2,R) in matrix form, then calculated the Lie brackets and formed the structure matrix of the affine Lie algebra aff(2,R). 1-form of the affine Lie algebra aff(2,R) is obtained from the determinant of the structure matrix of the affine Lie algebra aff(2,R). Furthermore, proved that the 2-form is symplectic and related to the 1-form. The result obtained is that the affine Lie algebra aff(2,R) has 1-form α=ε_12^*+ε_23^* on aff(2,R)^* which is related to its symplectic structure, β=ε_11^*∧ε_12^*+ε_12^*∧ε_22^*+ε_21^*∧ε_13^*+ε_22^*∧ε_23^* such that the affine Lie algebra aff(2,R) is a Frobenius Lie algebra. For further research, it can be developed into an affine Lie algebra with dimensions n(n+1).

Keywords


1-form; 2-form; Affine Lie Algebra; Frobenius Lie Algebra; Symplectic Structure

Full Text:

PDF

References


T. Hawkins, Emergence of the Theory of Lie Groups. New York, NY: Springer New York, 2000. doi: 10.1007/978-1-4612-1202-7.

A. McInerney, First Steps in Differential Geometry. New York, NY: Springer New York, 2013. doi: 10.1007/978-1-4614-7732-7.

B. Muraleetharan, K. Thirulogasanthar, and I. Sabadini, “A representation of Weyl-Heisenberg Lie algebra in the quaternionic setting,” Ann Phys (N Y), vol. 385, pp. 180–213, Oct. 2017, doi: 10.1016/j.aop.2017.07.014.

J. Jiang, “Representations of the q-Klein-bottle Lie algebra,” J Algebra, vol. 591, pp. 36–58, Feb. 2022, doi: 10.1016/j.jalgebra.2021.10.028.

R. N. Cahn, Semi-simple Lie algebras and their representations. Courier Corporation, 2014.

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Third printing. New York: Springer-Verlag, 1980.

M. J. Evans, “Nilpotent Lie algebras in which all proper subalgebras have class at most n,” J Algebra, vol. 591, pp. 1–14, Feb. 2022, doi: 10.1016/j.jalgebra.2021.09.031.

P. Benito, D. de-la-Concepcion, and J. Laliena, “Free nilpotent and nilpotent quadratic Lie algebras,” Linear Algebra Appl, vol. 519, pp. 296–326, Apr. 2017, doi: 10.1016/j.laa.2017.01.007.

I. Beltita and D. Beltita, “On Kirillov’s lemma for nilpotent Lie algebras,” J Algebra, vol. 427, pp. 85–103, Apr. 2015, doi: 10.1016/j.jalgebra.2014.12.026.

Y. Shang, “Lie algebra method for solving biological population model,” Journal of Theoretical and Applied Physics, vol. 7, no. 1, p. 67, 2013, doi: 10.1186/2251-7235-7-67.

A. I. Ooms, “On frobenius lie algebras,” Commun Algebra, vol. 8, no. 1, pp. 13–52, Jan. 1980, doi: 10.1080/00927878008822445.

D. N. Pham, “g-quasi-Frobenius Lie algebras,” Archivum Mathematicum, no. 4, pp. 233–262, 2016, doi: 10.5817/AM2016-4-233.

M. A. Alvarez, M. C. Rodríguez-Vallarte, and G. Salgado, “Contact and Frobenius solvable Lie algebras with abelian nilradical,” Commun Algebra, vol. 46, no. 10, pp. 4344–4354, Oct. 2018, doi: 10.1080/00927872.2018.1439048.

B. Csikos and L. Verhoczki, “Classification of Frobenius Lie algebras of dimension ≤ 6,” Publicationes Mathematicae-Debrecen, vol. 70, pp. 427–451, 2007.

E. Kurniadi and H. Ishi, “Harmonic Analysis for 4-Dimensional Real Frobenius Lie Algebras,” 2019, pp. 95–109. doi: 10.1007/978-3-030-26562-5_4.

M. Gerstenhaber and A. Giaquinto, “The Principal Element of a Frobenius Lie Algebra,” Lett Math Phys, vol. 88, no. 1–3, pp. 333–341, Jun. 2009, doi: 10.1007/s11005-009-0321-8.

A. Diatta and B. Manga, “On properties of principal elements of Frobenius Lie algebras,” Dec. 2012, [Online]. Available: https://arxiv.org/abs/1212.5380




DOI: https://doi.org/10.37905/jjom.v6i1.23254



Copyright (c) 2024 Aurillya Queency, Edi Kurniadi, Firdaniza Firdaniza

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.