Struktur Simplektik pada Aljabar Lie Affine aff(2,R)
Abstract
Keywords
Full Text:
PDFReferences
T. Hawkins, Emergence of the Theory of Lie Groups. New York, NY: Springer New York, 2000. doi: 10.1007/978-1-4612-1202-7.
A. McInerney, First Steps in Differential Geometry. New York, NY: Springer New York, 2013. doi: 10.1007/978-1-4614-7732-7.
B. Muraleetharan, K. Thirulogasanthar, and I. Sabadini, “A representation of Weyl-Heisenberg Lie algebra in the quaternionic setting,” Ann Phys (N Y), vol. 385, pp. 180–213, Oct. 2017, doi: 10.1016/j.aop.2017.07.014.
J. Jiang, “Representations of the q-Klein-bottle Lie algebra,” J Algebra, vol. 591, pp. 36–58, Feb. 2022, doi: 10.1016/j.jalgebra.2021.10.028.
R. N. Cahn, Semi-simple Lie algebras and their representations. Courier Corporation, 2014.
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Third printing. New York: Springer-Verlag, 1980.
M. J. Evans, “Nilpotent Lie algebras in which all proper subalgebras have class at most n,” J Algebra, vol. 591, pp. 1–14, Feb. 2022, doi: 10.1016/j.jalgebra.2021.09.031.
P. Benito, D. de-la-Concepcion, and J. Laliena, “Free nilpotent and nilpotent quadratic Lie algebras,” Linear Algebra Appl, vol. 519, pp. 296–326, Apr. 2017, doi: 10.1016/j.laa.2017.01.007.
I. Beltita and D. Beltita, “On Kirillov’s lemma for nilpotent Lie algebras,” J Algebra, vol. 427, pp. 85–103, Apr. 2015, doi: 10.1016/j.jalgebra.2014.12.026.
Y. Shang, “Lie algebra method for solving biological population model,” Journal of Theoretical and Applied Physics, vol. 7, no. 1, p. 67, 2013, doi: 10.1186/2251-7235-7-67.
A. I. Ooms, “On frobenius lie algebras,” Commun Algebra, vol. 8, no. 1, pp. 13–52, Jan. 1980, doi: 10.1080/00927878008822445.
D. N. Pham, “g-quasi-Frobenius Lie algebras,” Archivum Mathematicum, no. 4, pp. 233–262, 2016, doi: 10.5817/AM2016-4-233.
M. A. Alvarez, M. C. Rodríguez-Vallarte, and G. Salgado, “Contact and Frobenius solvable Lie algebras with abelian nilradical,” Commun Algebra, vol. 46, no. 10, pp. 4344–4354, Oct. 2018, doi: 10.1080/00927872.2018.1439048.
B. Csikos and L. Verhoczki, “Classification of Frobenius Lie algebras of dimension ≤ 6,” Publicationes Mathematicae-Debrecen, vol. 70, pp. 427–451, 2007.
E. Kurniadi and H. Ishi, “Harmonic Analysis for 4-Dimensional Real Frobenius Lie Algebras,” 2019, pp. 95–109. doi: 10.1007/978-3-030-26562-5_4.
M. Gerstenhaber and A. Giaquinto, “The Principal Element of a Frobenius Lie Algebra,” Lett Math Phys, vol. 88, no. 1–3, pp. 333–341, Jun. 2009, doi: 10.1007/s11005-009-0321-8.
A. Diatta and B. Manga, “On properties of principal elements of Frobenius Lie algebras,” Dec. 2012, [Online]. Available: https://arxiv.org/abs/1212.5380
DOI: https://doi.org/10.37905/jjom.v6i1.23254
Copyright (c) 2024 Aurillya Queency, Edi Kurniadi, Firdaniza Firdaniza
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jambura Journal of Mathematics has been indexed by
Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS.
Editorial Office
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.