The k-Tribonacci Matrix and the Pascal Matrix

Sri Gemawati, Musraini Musraini, Mirfaturiqa Mirfaturiqa

Abstract


This article discusses the relationship between the k-Tribonacci matrix Tn(k) and the Pascal matrix Pn, by first constructing the k-Tribonacci matrix and then looking for its inverse. From the inverse k-Tribonacci matrix, unique characteristics can be constructed so that general shapes can be constructed, and then from the relationship of the k-Tribonacci matrix Tn(k) and the Pascal matrix Pn obtain a new matrix, i.e. Un(k). Furthermore, a factor is derived from the relationship of the k-Tribonacci matrix Tn(k) and the Pascal matrix Pn i.e. Pn = Tn(k)Un(k).

Keywords


Tribonacci Numbers; k-Tribonacci Matrix; Pascal Matrix; Algebra of Matrix

Full Text:

PDF

References


T. Koshy, “Fibonacci and Lucas Numbers with Applications, ”Wiley−Interscience, New york, 2001, doi: 10.1002/9781118033067.

M. Feinberg, “Fibonacci−tribonacci,” Fibonacci Quarterly., Vol. 1, No. 3, pp. 70-74, 1963.

R. Lather and M. Kumar, “Stability of k−tribonacci functional equation in non−Archimedean space,” International Journal of Computer Applications., Vol. 128, No. 14, pp. 27−30, 2015.

J. L. Ramirez, “Incomplete Tribonacci number and polynomials,” Journal of Integer Sequences., Vol.17, No. 14, pp. 1-13, 2014.

G. Kizilaslan, “The linear algebra of a generalized Tribonacci matrix,” Math. Stat., Vol. 72, No. 1, pp 169-181, 2023, doi: 10.31801/cfsuasmas.1052686.

R. Brawer dan M. Pirovino, “The linear algebra of the Pascal matrix, ” Linear Algebra Applications., Vol. 174, pp. 13−23, 1992, doi: 10.1016/0024-3795(92)90038-c.

R. M. Yamaleev, “Pascal matrix representation of evolution of polynomials,” International Journal Of Applied and Computational Mathematics., doi: 10.1007/s40819-015-0037-7.

N. Sabeth, S. Gemawati, and H. Saleh, “A factorization of the Tribonacci matrix and the Pascal matrix,” Applied Mathematical Sciences., Vol.11, No. 10, pp. 489−497, 2017, doi: 10.12988/ams.2017.7126.

Mirfaturiqa, S. Gemawati and M. D. H. Gamal, “Tetranacci matrix via Pascal’s matrix,” Bulletin of Mathematics., Vol. 9, No. 1, pp. 1-7, 2017.

Mirfaturiqa, Nurhasnah, and M. B. Baheramsyah, “Faktorisasi matriks Pascal dan matriks tetranacci,” Jurnal Sainstek STTPekanbaru., Vol. 11, No. 1, pp. 60-65, 2023, doi: 10.35583/js.v11i1.194.

Mirfaturiqa, Weriono, and F. Palaha, “Hubungan matriks stirling jenis kedua dengan matriks tetranacci,” Jurnal Sainstek STTPekanbaru., Vol. 11, No. 2, pp. 102-105, 2023, doi: 10.35583/js.v11i2.218.

F. Rasmi, S. Gemawati, and M. D. H. Gamal, “Relation between stirling’s numbers of the second kind and tribonacci matrix,” Bulletin of Mathematics., Vol. 10 No. 1, pp. 33-39, 2018.

Mawaddaturrohmah, S. Gemawati, and M.D.H. Gamal, “Hubungan antara matriks striling jenis kedua dan matriks k-Fibonacci,” in Prosiding Seminar Nasional STKIP PGRI Sumatera Barat, 2019, pp. 104-110.

H. Anton, Elemntary Linear Algebra , 7 Edition. Jhon Wiley & Sons, Inc, 1994.

M. Bona, A Walk Through Combinatorics, 2 Edition. USA: University of Florida Press, 2006.




DOI: https://doi.org/10.37905/jjom.v6i1.24131



Copyright (c) 2024 Sri Gemawati, Musraini Musraini, Mirfaturiqa Mirfaturiqa

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.


 

slot online slot gacor slot