Efek Perlindungan Mangsa dan Daya Dukung Variabel pada Sistem Mangsa-Pemangsa dengan Fungsi Respon Beddington-DeAngelis
Abstract
Keywords
Full Text:
PDFReferences
J. P. Tripathi, S. Abbas, and M. Thakur, “Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge,” Nonlinear Dyn., vol. 80, no. 1–2, pp. 177–196, 2014, doi: 10.1007/s11071-014-1859-2.
S. Chakraborty, P. K. Tiwari, S. K. Sasmal, S. Biswas, S. Bhattacharya, and J. Chattopadhyay, “Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system,” Appl. Math. Model., vol. 47, pp. 128–140, 2017, doi: 10.1016/j.apm.2017.03.028.
S. Samanta, R. Dhar, I. M. Elmojtaba, and J. Chattopadhyay, “The Role of Additional Food in A Predator-prey Model with A Pey Refuge,” J. Biol. Syst., vol. 24, no. 2–3, pp. 345–365, 2016, doi: 10.1142/S0218339016500182.
J. H. Connell, S. E. Monographs, N. Winter, and J. H. Connell, “A PredatorPrey System in the Marine Intertidal Region . I . Balanus glandula and Several Predatory Species of Thais,” Ecol. Soc. Am., vol. 40, no. 1, pp. 49–78, 1970.
N. Al-Salti, F. Al-Musalhi, V. Gandhi, M. Al-Moqbali, and I. Elmojtaba, “Dynamical analysis of a prey-predator model incorporating a prey refuge with variable carrying capacity,” Ecol. Complex., vol. 45, no. July 2020, p. 100888, 2021, doi: 10.1016/j.ecocom.2020.100888.
E. González-Olivares and R. Ramos-Jiliberto, “Dynamic consequences of prey refuges in a simple model system: More prey, fewer predators and enhanced stability,” Ecol. Modell., vol. 166, no. 1–2, pp. 135–146, 2003, doi: 10.1016/S0304-3800(03)00131-5.
Y. Huang, F. Chen, and L. Zhong, “Stability analysis of a prey-predator model with holling type III response function incorporating a prey refuge,” Appl. Math. Comput., vol. 182, no. 1, pp. 672–683, 2006, doi: 10.1016/j.amc.2006.04.030.
Z. Ma, S. Wang, W. Li, and Z. Li, “The effect of prey refuge in a patchy predator-prey system,” Math. Biosci., vol. 243, no. 1, pp. 126–130, 2013, doi: 10.1016/j.mbs.2013.02.011.
D. Mukherjee, “The effect of refuge and immigration in a predator-prey system in the presence of a competitor for the prey,” Nonlinear Anal. Real World Appl., vol. 31, pp. 277–287, 2016, doi: 10.1016/j.nonrwa.2016.02.004.
A. Sih, “Prey refuges and predator-prey stability,” Theor. Popul. Biol., vol. 31, no. 1, pp. 1–12, 1987, doi: 10.1016/0040-5809(87)90019-0.
N. M. S. Sundari and M. Valliathal, “Analysing a prey predator model for stability with prey refuge-stage structure on predator,” J. Phys. Conf. Ser., vol. 1139, no. 1, 2018, doi: 10.1088/1742-6596/1139/1/012016.
M. Moustafa, M. H. Mohd, A. I. Ismail, and F. A. Abdullah, “Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge,” Chaos, Solitons and Fractals, vol. 109, pp. 1–13, 2018, doi: 10.1016/j.chaos.2018.02.008.
M. K. A. Al-Moqbali, N. S. Al-Salti, and I. M. Elmojtaba, “Prey-predator models with variable carrying capacity,” Mathematics, vol. 6, no. 6, Jun. 2018, doi: 10.3390/math6060102.
C. Ganguli, T. K. Kar, and P. K. Mondal, “Optimal harvesting of a prey-predator model with variable carrying capacity,” Int. J. Biomath., vol. 10, no. 5, pp. 1–24, 2017, doi: 10.1142/S1793524517500693.
P. S. Meyer and J. H. Ausubel, “Carrying capacity: A model with logistically varying limits,” Technol. Forecast. Soc. Change, vol. 61, no. 3, pp. 209–214, 1999, doi: 10.1016/S0040-1625(99)00022-0.
C. S. Holling, “The Components of Predation as Revealed by a Study of SmallMammal Predation of the European Pine Sawfly,” Can. Entomol., vol. 91, no. 547, pp. 293–320, 1959, doi: 10.2351/1.5058368.
M. P. Hassell, “Mutual Interference between Searching Insect Parasites,” J. Anim. Ecol., vol. 40, no. 2, p. 473, 1971, doi: 10.2307/3256.
J. R. Beddington, “Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency,” J. Anim. Ecol., vol. 44, no. 1, p. 331, 1975, doi: 10.2307/3866.
D. L. DeAngelis, R. A. Goldstein, and R. V. O’Neill, “A Model for Tropic Interaction,” Ecology, vol. 56, no. 4, pp. 881–892, 1975, doi: 10.2307/1936298.
W. E. Boyce, R. C. DiPrima, and D. B. Meade, Elementary differential equations and boundary value problems, 12th Edition. John Wiley & Sons, 2021.
L. Perko, Equations and Dynamical Systems. New York: Springer, 2001, doi: 10.1007/978-1-4613-0003-8.
DOI: https://doi.org/10.37905/jjom.v6i1.24288
Copyright (c) 2024 Aisyiah Kholifatul Hanifah, Abadi Abadi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jambura Journal of Mathematics has been indexed by
Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS.
Editorial Office
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.