Comparative Study in Controlling Outliers and Multicollinearity Using Robust Performance Jackknife Ridge Regression Estimator Based on Generalized-M and Least Trimmed Square Estimator

Gustina Saputri, Netti Herawati, Tiryono Ruby, Khoirin Nisa

Abstract


Regression analysis is one of the statistical methods used to determine the causal relationship between one or more explanatory variables to the affected variable. The problem that often occurs in regression analysis is that there are multicollonity and outliers. To deal with such problems can be solved using ridge regression analysis and robust regression. Ridge regression can solve the problem of multicollinearas by assigning a constant k to the matrix Z′Z. But in this method the resulting bias value is still high, so to overcome this problem, the jackknife ridge regression method is used. Meanwhile, to overcome outliers in the data using robust regression methods which have several estimation methods, two of which are the Generalized-M (GM) estimator and the Least Trimmed Square (LTS) estimator. The aim of the study is to solve the problem of multicollinearity and outliers simultaneously using robust jackknife ridge regression method with GM estimators and LTS estimators. The results showed that the robust ridge jackknife regression method with LTS estimator can control multicollinearity and outliers simultaneously better based on MSE, AIC and BIC values compared to the robust ridge jackknife regression method with GM estimators. This is indicated by the value MSE = -6.60371, AIC = 75.823 and BIC = 81.642 on LTS estimators that are of lower value than GM estimators.


Keywords


Outliers; Multicollinearity; Robust; Ridge Regression; Jackknife Ridge Regression; Generalized-M Estimator; Least Trimmed square Estimator

Full Text:

PDF

References


D.C. Montgomery and E.A. Peck, Introduction to Linear Regression Analysis, 2nd Ed. New York: A Wiley-Interscience, 1991.

E. Setiawan, N. Herawati, K. Nisa, Nusyirwan, and S. Saidi, ”Handling Full Multicollinearity and Various Numbers of Outliers using Robust Ridge Regression,” Sci. Int. (Lahore)., vol. 31, no. 2, pp. 201-204, 2019.

R. Aristiarto, Y. Susanti, and I. Susanto, “ Analisis Regresi Robust Estimasi GM Pada Indeks Keparahan Kemiskinan Provinsi-Provinsi di Indonesia,” in Proc. Sem. Nas. Ris. Inov. Tek. (SEMNAS RISTEK), 2023, pp.205-209.

N. Herawati, K. Nisa, E. Setiawan, Nusyirwan and Tiryono, “Regularized Multiple Regression Methods to Deal with Severe Multicollinearity,” Inter. J. Stat. App., vol. 8, no. 4, pp. 167-172, 2018, doi: 10.5923/j.statistics.20180804.02.

A. H. Arrasyid, D. Ispriyanti, and A. Hoyyi, “Metode Modified Jackknife Ridge Regression dalam Penanganan Multikolinearitas (Studi Kasus Indeks Pembangunan Manusia di Jawa Tengah),” J. Gaussian., vol. 10, no. 1, pp. 104,113, Feb. 2021, doi: 10.14710/j.gauss.10.1.104-113.

M. Khurana, Y. P. Chaubey, and S. Chandra, “Jackknifing The Ridge Regression Estimators: A Revisit,” Communic. Stat. Theo. Meth., vol. 43, no. 24, pp. 5249-62, 2014, doi: 10.1080/03610926.2012.729640.

A. T. Utomo, Erviani and A. Fitrianto, “Analisis Ridge Robust Penduga Generalized M (GM) Pada Pemodelan Kalibrasi Untuk Kadar Gula Darah,” J. Stat. App. Teach. Res., vol. 4, no. 2, pp. 59-69, 2022, doi: 10.35580/variansiunm14.

M. Alguraibawi, H. Midi, and S. Rana, “Robust Jackknife Ridge Regression to Combat Multicollinearity and High Leverage Points In Multiple Linear Regressions,” Eco. Comp. Eco. Cyber. Res., No. 4, pp. 305-322, 2015.

F. S. M. Batah, T.V. Ramanathan, and S.D. Gore, “The Efficiency of Modified Jack-Knife and Ridge Type Regression Estimators: A Comparison,” Surveys Math. App., vol. 3, pp. 111-122, 2008.

N. H. Jadhav, and D. N. Kashid, “A jackknife Ridge M-Estimator for Regression Models with Multicollinearity and Outliers,” J. stat. the. prac., vol. 5, pp. 659-673, 2011, doi: 10.1080/15598608.2011.10483737.

N. Herawati, K. Nisa, D. Azis, and S. U. Nabila, “Ridge Regression for Handling Different Levels of Multicollinearity,” Sci. Int. (Lahore)., vol. 30, no. 4, pp. 597-600, 2018.

R. R. Wilcox, Introduction to Robust Estimation and Hypothesis. San Diego: Academic Press, 2005.

P. J. Rousseuw and A. M. Leroy, Robust Ridge Regression and Outlier Detection. New York: Wiley, 1987, doi: 10.1002/0471725382.

P. J. Huber, Robust Statistic. New York: John Wiley and Sons, 1981, doi: 10.1002/0471725250.

I. R. Akolo and A. Nadjamudin , ” Analisis Regresi Robust Estimasi Least Trimmed Square dan Estimasi Maximum Likelihood pada Pemodelan IPM di Pulau Sulawesi ”, Euler J. Ilm. Mat. Sains dan Teknol., Vol. 10, No. 2, pp. 211-221, 2022, doi: 10.34312/euler.v10i2.16708.




DOI: https://doi.org/10.37905/jjom.v6i2.24828



Copyright (c) 2024 Gustina Saputri, Netti Herawati, Tiryono Ruby, Khoirin Nisa

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.