Perbandingan Propensity Score Stratification dan Propensity Score Matching dengan Pendekatan Multivariate Adaptive Regression Spline

Ingka Rizkyani Akolo, Setia Ningsih, Hendra Dukalang

Abstract


Research on complications of Diabetes Mellitus (DM) is multifactorial, where the risk factors causing DM complications are interrelated, leading to confounding bias, which results in inaccurate research findings. Confounding bias can be reduced using the propensity score method. This study aims to compare the performance of the Propensity Score Stratification (PSS) and Propensity Score Matching (PSM) methods with the Multivariate Adaptive Regression Spline (MARS) approach in estimating treatment effects on DM complication cases. The data used is the medical records of type-2 DM patients at Hospital X. The results showed that the PSS method with the MARS approach is not suitable for small data sets, as it can lead to treatment or control groups lacking members, making it impossible to calculate the p-value in balance testing or the Percent Bias Reduction (PBR). The estimated Average Treatment Effect (ATE) using the PSS method was 0.487 with a PBR of 35.1%, whereas the estimated Average Treatment for Treated (ATT) using the PSM method was 0.531 with a PBR of 99.46%. These PBR values indicate that the best method for estimating treatment effects and the one that can reduce the most bias in this case is the PSM method with MARS. The analysis also showed that serum uric acid levels significantly affect the peripheral diabetic neuropathy (PDN) status of DM patients.

Keywords


Propensity Score Stratification; Propensity Score Matching; MARS; DM Complications

Full Text:

PDF

References


IDF, “Indonesia Diabetes Report 2000 - 2045,” 2024. [Online] Available: https://diabetesatlas.org/data/en/country/94/id.html. [diakses Jun 19, 2024].

E. Ernawati, B. W. Otok, dan S. Sutikno, “Penggunaan Propensity Score Stratification-Support Vector Machine Untuk Mengestimasi Efek Perlakukan Aktivitas Olahraga Pada Penderita Diabetes Melitus,” Indones. J. Stat. Its. Appl., vol. 4, no. 3, pp. 510–527, 2020. doi: 10.29244/ijsa.v4i3.653.

N. Faulina, K. Nisa, D. Aziz, dan E. Setiawan, “Analisis Propensity Score Matching Pada Kejadian Diabetes Melitus Yang Memuat Faktor Confounding,” J. Siger Mat., vol. 02, no. 02, pp. 43–51, 2021.

L. Meuli dan F. Dick, “Understanding Confounding in Observational Studies,” Eur. J. Vasc. Endovasc. Surg., vol. 55, no. 5, p. 737, 2018. doi: 10.1016/j.ejvs.2018.02.028.

I. R. Akolo, B. W. Otok, S. W. Purnami, dan R. Hiola, “Propensity Score Stratification Analysis using Logistic Regression for Observational Studies in Diabetes Mellitus Cases,” in Proceeding of 3rd International Conference on Research, Implementation and Education of Mathematics and Science, 2016, pp. 59–66.

A. Adityaningrum, “Estimasi Propensity Score Matching Berdasarkan Pendekatan Multivariate Adaptive Regression Splines,” Institut Teknologi Sepuluh Nopember, 2017.

A. Wahyuni, “Propensity Score Stratification (PSS) Menggunakan Multivariate Adaptive Regression Spline (MARS) Pada Kasus Diabetes Melitus Tipe 2,” Institut Teknologi Sepuluh Nopember, 2019.

J. L. Adelson, D. B. McCoach, H. J. Rogers, J. A. Adelson, dan T. M. Sauer, “Developing and applying the propensity score to make causal inferences: Variable selection and stratification,” Front. Psychol., vol. 8, pp. 1–10, 2017. doi: 10.3389/fpsyg.2017.01413.

H. Nisa’, “Perbandingan Propensity Score Weighting dan Matching menggunakan Regresi Logistik (Studi Kasus: Data Kelulusan ASI Eksklusif di Kecamatan Selopuro Kabupaten Blitar),” Universitas Brawijaya, 2019.

U. Benedetto, S. J. Head, G. D. Angelini, dan E. H. Blackstone, “Statistical primer: Propensity score matching and its alternatives,” Eur. J. Cardio-thoracic Surg., vol. 53, no. 6, hal. 1112–1117, 2018, doi: 10.1093/ejcts/ezy167.

M. R. Mattalunru, S. Annas, dan M. K. Aidid, “Aplikasi Multivariate Adaptive Regression Splines (Mars) Untuk Mengetahui Faktor Yang Mempengaruhi Curah Hujan Di Kota Makassar,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 1, pp. 9–19, 2022. doi: 10.35580/variansiunm2.

B. W. Otok, A. Aisyah, Purhadi, dan S. Andari, “Propensity score matching of the gymnastics for diabetes mellitus using logistic regression,” AIP Conf. Proc., vol. 1913, 2017. doi: 10.1063/1.5016668.

S. Anam, S. Sugiman, dan S. Sunarmi, “Ketepatan Klasifikasi dengan Menggunakan Metode Multivariate Adaptive Regression Spline (MARS) Pada Data Kelompok Rumah Tangga Kabupaten Cilacap,” UNNES J. Math., vol. 6, no. 1, pp. 92–101, 2017.

S. Hasanah, B. W. Otok, dan A.Adeni, “Perbandingan Metode Propensity Score Matching-Support Vector Machine dan Propensity Score Matching-Regresi Logistik Biner Pada Kasus HIV/AIDS,” Sainmatika J. Ilm. Mat. dan Ilmu Pengetah. Alam, vol. 18, no. 1, p. 93, 2021. doi: 10.31851/sainmatika.v17i3.4925.

P. C. Austin dan E. A. Stuart, “The Effect of A Constraint on The Maximum Number of Controls Matched to Each Treated Subject on The Performance of Full Matching on The Propensity Score When Estimating Risk Differences,” Stat. Med., vol. 40, no. 1, hal. 101–118, 2021, doi: 10.1002/sim.8764.




DOI: https://doi.org/10.37905/jjom.v6i2.26137



Copyright (c) 2024 Ingka Rizkyani Akolo, Setia Ningsih, Hendra Dukalang

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.