The Hamiltonian and Hypohamiltonian of Generalized Petersen Graph (GP_(n,9))
Abstract
The study of Hamiltonian and Hypohamiltonian properties in the generalized Petersen graph GP_{n,k} is interesting due to the unique structure and characteristics of these graphs. The method employed in this study involves searching for Hamiltonian cycles within the generalized Petersen graph GP_{n,9}. Not all of GP_{n,9} graphs are Hamiltonian. For certain values of n, if the graph does not contain a Hamiltonian cycle, then one vertex should be removed from the graph to become Hamiltonian or neither. This research specifically investigates the Hypohamiltonian property of GP_{n,9}. The results show that for n ≡ 3 (mod 19) and n ≡ 5 (mod 19), GP_{n,9} is Hamiltonian. Meanwhile, for n ≡ 0 (mod 19), GP_{n,9} is Hypohamiltonian. Furthermore, for n ≡ 1 (mod 19), n ≡ 2 (mod 19), and n ≡ 4 (mod 19), GP_{n,9} is neither Hamiltonian nor Hypohamiltonian.
Keywords
Full Text:
PDFReferences
S. Amiroch and D. Kiratama, “A Study on parthenogenesis of Petersen graph,†International Journal of Computing Science and Applied Mathematics, vol. 3, no. 1, pp. 11-15, Feb. 2017, doi: 10.12962/j24775401.v3i1.2115.
D. B. West, Introduction to Graph Theory, 2nd ed. Upper Saddle River: Prentice Hall, 2001.
K. S. Potanka, “Groups, graphs, and symmetry-breaking,†Master Thesis, 1988.
J. Ginting and H. Banjarnahor, “Graf Petersen dengan Beberapa Sifat-Sifat yang Berkaitan,†Karismatika-ISSN 2443-0366, vol. 2, no. 1, pp. 29-37, 2016.
W. D. Wallis, A Beginner’s Guide to Graph Theory, 2nd ed. Birkhäuser Boston, 2007, doi: 10.1007/978-0-8176-4580-9.
F. Chen and G. Fan, “Fulkerson-covers of hypohamiltonian graphs,†Discrete Applied Mathematics, vol. 186, no. 1, pp. 66–73, 2015, doi: 10.1016/j.dam.2015.01.009.
Z. RyjáÄek, P. Vrána, and L. Xiong, “Hamiltonian properties of 3-connected {claw, hourglass}-free graphs,†Discrete Mathematics, vol. 341, no. 6, pp. 1806–1815, Jun. 2018, doi: 10.1016/J.DISC.2017.10.033.
I. Danarto, “Sifat hamiltonian dan hipohamiltonian pada graf Petersen diperumum (GPn,1 & GPn,2),†Skripsi, Universitas Islam Maulana Malik Ibrahim, Malang, 2012.
M. Salman, “Contributions to graph theory,†Ph.D. Thesis, University of Twente, Netherlands, 2005.
R. Munir, Matematika Diskrit, 3rd ed. Bandung: Informatika Bandung, 2010.
G. Chartrand, L. Lesniak, and P. Zhang, Graph & Digraph, 5th ed. London: Chapman & Hall/CRC, 2011.
R. Makalew, C. Montolalu, and L. Mananoas, “Hamiltonian path in 4-connected graphs,†Journal of Mathematics and Applications, vol. 9, pp. 181–188, 2020, doi: 10.35799/dc.9.2.2020.
G. L. Chia, S.-H. Ong, and S. Arumugam, “Hamilton cycles in cubic graphs,†AKCE International Journal of Graphs and Combinatorics, vol. 4, no. 3, pp. 251–259, Mar. 2020, doi: 10.1080/09728600.2007.12088840.
P. N. Adwita and S. Gemawati, “Hamiltonian and hypohamiltonian of generalized Petersen graph (GPn,6),†Journal of Mathematical Sciences and Optimization, vol. 1, no. 2, pp. 72–86, 2024.
S. Gemawati, M. Musraini, S. Susilawati, and P. N. Adwita, "Hamiltonian and Hypohamiltonian of Generalized Petersen Graph (GP_(n,7))," Preprint, 2024.
DOI: https://doi.org/10.37905/jjom.v7i1.30053
Copyright (c) 2025 Susilawati, Iis Nasfianti, Efni Agustiarini, Dinda Khairani Nasution

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jambura Journal of Mathematics has been indexed by
Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS.
Editorial Office
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.