Comparative Study of Multilayer Perceptron and Recurrent Neural Network in Predicting Population Growth Rate in Brebes Regency

Izzatul Yazidah, Emy Siswanah

Abstract


Due to its ever-growing population, Brebes had the biggest population in Central Java from 2020 to 2022. The government of Brebes has to predict the growth rate of the population and prepare the resources and employment opportunities to anticipate this population growth rate. This research aims to analyze the result of growth rate prediction in Brebes using Multilayer Perceptron (MLP) and Recurrent Neural Network (RNN). These two methods are applied to determine the most suitable one to predict the population growth rate. This is determined by comparing the smallest MAPE value of these two methods. The analyzed data of the total population from 1991-2022 is taken from Badan Pusat Statistik (BPS) of Brebes. The percentage of division between training and testing data is 80%:20%. According to the research results, the recurrent neural network is the most suitable method, with the smallest MAPE being 1.9973%.

Keywords


Prediction; Population Growth Rate; Multilayer Perceptron; Recurrent Neural Network

Full Text:

PDF

References


WorldBank, “Population total,” World Bank, 2022. [Online]. Available: https://data.worldbank.org/indicator/SP.POP.TOTL.

A. Akhirul, Y. Witra, I. Umar, and E. Erianjoni, “Dampak Negatif Pertumbuhan Penduduk terhadap Lingkungan dan Upaya Mengatasinya,” Jurnal Kependudukan dan Pembangunan Lingkungan, vol. 1, no. 3, pp. 76–84, 2020.

P. Hardati, “Pertumbuhan Penduduk dan Struktur Lapangan Pekerjaan di Jawa Tengah,” Forum Ilmu Sosial, vol. 40, no. 2, pp. 219–229, 2013, doi: 10.15294/fis.v40i2.5363.

BPS, “Jumlah Penduduk Kab. Brebes Menurut Kecamatan (Jiwa),” Badan Pusat Statistik Kabupaten Brebes, 2022. [Online]. Available: https://brebeskab.bps.go.id/id/statistics.

T. A. Fauziyah and A. P. Utomo, “Angka Kemiskinan Brebes Turun 1,38 Persen, Wagub Taj Yasin: Gencarkan Lagi,” Kompas, 2023. [Online]. Available: https://regional.kompas.com/read/2023/01/13/201919078.

Y. Arafat, “Penduduk Brebes Terbanyak di Jateng,” Pemerintah Provinsi Jawa Tengah, 2021. [Online]. Available: https://jatengprov.go.id/beritadaerah/sp2020.

T. Hafizah and D. K. Pane, JST for Beginner: Memulai Belajar Konsep Dasar Jaringan Syaraf Tiruan, Jambi: PT. Sonpedia Publishing Indonesia, 2023.

F. Pakaja, A. Naba, and Purwanto, “Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor,” Jurnal EECCIS, vol. 6, no. 1, pp. 23–28, 2012, doi: 10.21776/jeeccis.v6i1.162.

B. Choubin, S. Khalighi-Sigaroodi, A. Malekian, and Ö. Kişi, “Multiple Linear Regression, Multilayer Perceptron Network and Adaptive Neuro-Fuzzy Inference System for the Prediction Of Precipitation Based On Large-Scale Climate Signals,” Hydrological Sciences Journal, vol. 61, no. 6, pp. 1001–1009, 2014, doi: 10.1080/02626667.2014.966721.

S. Nooriansyah, “Analisis Kinerja Metode Artificial Neural Network dan Support Vector Regression untuk Prediksi Significant Wave Height,” Jurnal Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 17–24, 2018, doi: 10.33005/scan.v13i1.1054.

A. B. Aribowo, D. Sugiarto, I. A. Marie, and J. F. A. Siahaan, “Peramalan Harga Beras IR64 Kualitas III Menggunakan Metode Multilayer Perceptron, Holt-Winters dan Auto Regressive Integrated Moving Average,” Jurnal Teknologi Informasi, vol. 11, no. 2, pp. 60–64, 2019, doi: 10.31937/ti.v11i2.1246.

J. Wang, J. Wang, W. Fang, and H. Niu, “Financial Time Series Prediction Using Elman Recurrent Random Neural Networks,” Computational Intelligence and Neuroscience, vol. 2016, 2016, doi: 10.1155/2016/4742515.

A. Farhah, A. L. Prasasti, and M. Paryasto, “Implementasi Recurrent Neural Network dalam Memprediksi Kepadatan Restoran Berbasis LSTM,” Jurnal Media Informasi Budidarma, vol. 5, no. 2, pp. 524–531, 2021, doi: 10.30865/mib.v5i2.2916.

N. Hermawan, “Aplikasi Model Recurrent Neural Network dan Recurrent Neuro Fuzzy untuk Peramalan Banyaknya Penumpang Kereta Api Jabodetabek,” Skripsi, Universitas Negeri Semarang, 2014.

A. F. Achmalia, Walid, and Sugiman, “Peramalan Penjualan Semen Menggunakan Backpropagation Neural Network dan Recurrent Neural Network,” Unnes Journal of Mathematics, vol. 9, no. 1, pp. 6–21, 2020, doi: 10.15294/ujm.v9i1.29970.

E. A. Kusnanti et al., “Predicting Velocity and Direction of Ocean Surface Currents using Elman Recurrent Neural Network Method,” Jurnal Information Systems Engineering and Business Intelligence, vol. 8, no. 1, pp. 21–30, 2022, doi: 10.20473/jisebi.8.1.21-30.

E. Mulyatiningsih, Riset Terapan Bidang Pendidikan dan Teknik, Yogyakarta: Universitas Negeri Yogyakarta, 2011.

M. A. Zakariah, Metodologi Penelitian Kualitatif, Kuantitatif, Action Research, Research and Development (RnD), Kolaka: Yayasan Pondok Pesantren Al Mawaddah Warrahmah, 2020.

A. Marisya and E. Sukma, “Konsep Model Discovery Learning pada Pembelajaran Tematik Terpadu di Sekolah Dasar menurut Pandangan para Ahli,” Jurnal Pendidikan Tambusai, vol. 4, no. 3, pp. 2189–2198, 2020, doi: 10.31004/jptam.v4i3.697.

A. Y. Anggoro, “Aplikasi Jaringan Syaraf Tiruan dengan Algoritma Backpropagasi untuk Memprediksi Perubahan Harga Saham LQ 45,” Semnaptika, vol. 1, no. 1, pp. 46–53, 2023.

S. Kusumadewi, Membangun Jaringan Syaraf Tiruan: Menggunakan MATLAB & Excel Link, Yogyakarta: Graha Ilmu, 2004.

A. P. Windarto et al., Jaringan Syaraf Tiruan: Algoritma Prediksi dan Implementasi, Medan: Yayasan Kita Menulis, 2020.

A. F. Hardiyanti and D. Fitrianah, “Perbandingan Algoritma C4.5 dan Multilayer Perceptron untuk Klasifikasi Kelas Rumah Sakit di DKI Jakarta,” Jurnal Telekomunikasi dan Komputasi, vol. 11, no. 3, pp. 198–209, 2021, doi: 10.22441/incomtech.v11i3.10632.

J. J. Siang, Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab, Yogyakarta: CV. Andi Offset, 2009.

M. B. El Houari, O. Zegaoui, and A. Abdallaoui, “Prediction of Air Temperature Using Multi-layer Perceptrons with Levenberg-Marquardt Training Algorithm,” International Research Journal of Engineering and Technology, vol. 2, no. 8, pp. 26–32, 2015.

D. O. Deltania, “Prakiraan Kebutuhan Energi Listrik Wilayah Provinsi Jawa Tengah menggunakan Metode Backpropagation Neural Network dan Metode Ekstrapolasi Linier,” Jurnal Simetris, vol. 14, no. 2, pp. 351–365, 2023, doi: 10.24176/simet.v14i2.9487.

W. Santoso, “Prediksi Volume Sampah di TPSA Banyuurip Menggunakan Metode Backpropagation Neural Network,” Jurnal Media Informasi Budidarma, vol. 7, no. 1, pp. 464–472, 2023, doi: 10.30865/mib.v7i1.5499.

H. Mustafidah, M. Z. Budiastanto, and Suwarsito, “Kinerja Algoritma Pelatihan Levenberg-Marquardt dalam Variasi Banyaknya Neuron pada Lapisan Tersembunyi,” JUITA Journal of Informatics, vol. 7, no. 2, pp. 115–123, 2019, doi: 10.30595/juita.v7i2.5863.

D. Desriwendi, A. Hoyyi, and T. Wuryandari, “Pemodelan Geographically Weighted Logistic Regression (GWLR) dengan Fungsi Pembobot Fixed Gaussian Kernel dan Adaptive Gaussian Kernel,” Jurnal Gaussian, vol. 4, no. 2, pp. 193–204, 2015, doi: 10.14710/j.gauss.4.2.193-204.




DOI: https://doi.org/10.37905/jjom.v7i1.30199



Copyright (c) 2025 Izzatul Yazidah, Emy Siswanah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.