Forecasting of Rice Harvest Results Using SVR Modeling Techniques

Devie Rosa Anamisa, Bain Khusnul Khotimah, Mohammad Yanuar Hariyawan, Firli Irhamni, Achmad Jauhari, Fifin Ayu Mufarroha, Dina Violina, Dinah Nuraini

Abstract


Forecasting is an activity that predicts future values {}{}by utilizing existing track record data. The object of this study is rice plants because they are the primary food source for the Indonesian people. Every year, the Government strives for rice farmers throughout Indonesia to produce abundant rice harvests to meet the community's food needs. Therefore, rice farmers need a system that can predict their rice harvests to obtain information about future harvests to find out whether their harvests have decreased or increased so that they can determine efforts that can be made in the future and can be used as a policy maker for the Government in maintaining the national food security chain. This study uses time series data on rice harvests in Pamekasan, Madura, for 2007-2023 using the Support Vector Regression (SVR) model. The results of several trials have shown that the application of the SVR model for forecasting rice harvests in 2024 has produced good accuracy with a relatively low MAPE error rate of 3.97\%, and the rice harvest has reached an average prediction of 15470.08 tons with an average actual data of 7937.884 tons. Therefore, applying this SVR model can be recommended for predicting future rice harvests. 


Keywords


Forecasting; Time Series Data; Rice Harvest Results; Modeling; SVR

Full Text:

PDF

References


M. P. Erlin, A. T. Putra, and M. A. Muslim, “Forecasting Inflation Rate Using Support Vector Regression (SVR) Based Weight Attribute Particle Swarm Optimization (WAPSO),” Sci. J. Informatics, vol. 5, no. 2, pp. 118–127, 2018.

L. Lindawati, I. Zulfida, S. K. H. Nasution, and S. Handayani, “Multi-aspect Analysis of Rice Sustainability in the Improvement of Rice Production in North Sumatra Province, Indonesia,” Agro Bali Agric. J., vol. 7, no. 2, pp. 390–398, 2024, doi: 10.37637/ab.v7i2.1741.

S. Dewi and R. P. Destiarni, “Technical Efficiency of Ciherang Rice Farming in East Lenteng Village, Lenteng District, Sumenep Regency,” Agrisocionomics, vol. 7, no. 2, pp. 349–362, 2023, [Online]. Available: http://ejournal2.undip.ac.id/index.php/agrisocionomics.

P. Fendiyanto, “Peramalan Hasil Produksi Padi di Desa Mulawarman dengan Metode Trend Moment,” AKSIOMA (J. Mat. dan Pendidik. Mat.), vol. 15, no. 1, pp. 105–113, 2024.

G. A. Prasetyo, S. A. Wibowo, and N. Vendyansyah, “Penerapan Data Mining dengan Metode Double Moving Average untuk Memprediksi Penjualan Kedelai,” JATI (J. Mhs. Tek. Inform.), vol. 7, no. 4, pp. 2303–2310, 2023, doi: 10.36040/jati.v7i4.7490.

D. A. Mardhika, B. D. Setiawan, and R. C. Wihandika, “Penerapan Algoritma Support Vector Regression pada Peramalan Hasil Panen Padi Studi Kasus Kabupaten Malang,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, pp. 9402–9412, 2019, [Online]. Available: http://j-ptiik.ub.ac.id.

A. A. Suyono, K. Kusrini, and M. R. Arief, “Prediksi Indeks Harga Konsumen Komoditas Makanan di Kota Surabaya menggunakan Support Vector Regression,” Metik J., vol. 6, no. 1, pp. 45–51, 2022, doi: 10.47002/metik.v6i1.339.

M. F. Rohmah, I. K. G. D. Putra, R. S. Hartati, and L. Ardiantoro, “Comparison of Four Kernels of SVR to Predict Consumer Price Index,” J. Phys. Conf. Ser., vol. 1737, no. 1, 2021, doi: 10.1088/1742-6596/1737/1/012018.

H. Khan, T. J. Esau, A. A. Farooque, and F. Abbas, “Wild Blueberry Harvesting Losses Predicted with Selective Machine Learning Algorithms,” Agric., vol. 12, no. 10, pp. 1–16, 2022, doi: 10.3390/agriculture12101657.

R. J. D. Simamora, Tibyani, and Sutrisno, “Peramalan Curah Hujan Menggunakan Metode Extreme Learning Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, pp. 9670–9676, 2019, [Online]. Available: http://j-ptiik.ub.ac.id.

I. Permana, “The Effect of Data Normalization on the Performance of the Classification Results of the Backpropagation Algorithm,” Indones. J. Inform. Res. Softw. Eng., vol. 2, no. 1, pp. 67–72, 2022, [Online]. Available: https://media.neliti.com/media/publications/485639.pdf.

T. N. Tran, B. M. Lam, A. T. Nguyen, and Q. B. Le, “Load forecasting with support vector regression: influence of data normalization on grid search algorithm,” Int. J. Electr. Comput. Eng., vol. 12, no. 4, pp. 3410–3420, 2022, doi: 10.11591/ijece.v12i4.pp3410-3420.

M. L. Radhitya and G. I. Sudipa, “Pendekatan Z-Score dan Fuzzy dalam Pengujian Akurasi Peramalan Curah Hujan,” SINTECH (Sci. Inf. Technol. J.), vol. 3, no. 2, pp. 149–156, 2020, doi: 10.31598/sintechjournal.v3i2.567.

Y. H. Chen, W. C. Hong, W. Shen, and N. N. Huang, “Electric load forecasting based on a least squares support vector machine with fuzzy time series and global harmony search algorithm,” Energies, vol. 9, no. 2, 2016, doi: 10.3390/en9020070.

R. Dini, B. D. Setiawan, and C. Dewi, “Prediksi Hasil Panen Benih Tanaman Kenaf Menggunakan Metode Support Vector Regression (SVR) pada Balai Penelitian Tanaman Pemanis dan Serat (Balittas),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 12, pp. 6519–6526, 2018, [Online]. Available: http://j-ptiik.ub.ac.id.

H. H. Mahmood and Z. Hamodat, “Intelligent Systems and Applications in Enhancing Maximum Power Point Tracking through Ensemble Techniques,” J. Intell. Syst. Appl., vol. 12, no. 1c, pp. 1072–1084, 2024.

A. M. Priyatno, A. Wiratmo, F. Syuhada, and P. Cholidhazia, “Perbandingan Imputasi dan Parameter Support Vector Regression untuk Peramalan Cuaca,” J. SIMETRIS, vol. 10, no. 2, pp. 651–660, 2019, doi: 10.24176/simet.v10i2.3402.

S. Saadah, F. Z. Z., and H. H. Z., “Support Vector Regression (SVR) dalam Memprediksi Harga Minyak Kelapa Sawit di Indonesia dan Nilai Tukar Mata Uang EUR/USD,” J. Comput. Sci. Informatics Eng., vol. 5, no. 1, pp. 85–92, 2021, doi: 10.29303/jcosine.v5i1.403.

Z. Rais, “Analisis Support Vector Regression (SVR) dengan Kernel Radial Basis Function (RBF) untuk Memprediksi Laju Inflasi di Indonesia,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 1, pp. 30–38, 2022, doi: 10.35580/variansiunm13.

M. R. Rifqi, B. Darma Setiawan, and F. A. Bacthiar, “Support Vector Regression Untuk Peramalan Permintaan Darah: Studi Kasus Unit Transfusi Darah Cabang-PMI Kota Malang,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3332–3342, 2018.

S. Amar, A. Sudiarso, and M. K. Herliansyah, “The Accuracy Measurement of Stock Price Numerical Prediction,” J. Phys. Conf. Ser., vol. 1569, no. 3, 2020, doi: 10.1088/1742-6596/1569/3/032027.




DOI: https://doi.org/10.37905/jjom.v7i1.30592



Copyright (c) 2025 Devie Rosa Anamisa, Bain Khusnul Khotimah, Mohammad Yanuar Hariyawan, Firli Irhamni, Achmad Jauhari, Fifin Ayu Mufarroha, Dina Violina, Dinah Nuraini

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.