Control Analysis on Dynamic System Model of Tuberculosis Disease with Educational Campaign, Vaccination, and Treatment

Nur Ilmayasinta, Prismahardi Aji Riyantoko, Annisa Rahmita Soemarsono, Ulifatur Rochmatin

Abstract


Tuberculosis (TB) is caused by bacteria (Mycobacterium tuberculosis) that most commonly attacks the lungs. TB is spread from person to person through the air. When people with pulmonary TB cough, sneeze, or spit, they propel TB germs into the air. By inhaling only a small number of these germs, a person can become infected. Tuberculosis is curable and preventable. Prevention that can be done is by providing education about TB and vaccines. While treatment can be done by treating infected individuals. This study examines the TB epidemic model with the application of control, by finding optimal control solutions using the Pontryagin Minimum Principle method. In this study, three control variables were applied, namely education, vaccination and treatment. Numerical calculations were carried out using the Forward Backward Sweep 4th order Runge Kutta method and and then simulated. The results of the numerical simulation of the TB epidemic model show that by implementing control in the form of education, vaccination, and treatment, the population of infected individuals can be reduced.


Keywords


Dynamic system; Tuberculosis; Optimal Control; PMP Method

Full Text:

PDF

References


P. Chaulet, "Treatment of Tuberculosis: Case holding until cure," WHO/TB/83, World Health Organization, Geneva, 141, 1983.

K. Styblo, "The relationship between the risk of tuberculous infection and the risk of developing infectious tuberculosis," Bulletin of the International Union Against Tuberculosis and Lung Disease, vol. 60, pp. 117–119, 1985.

N. Ilmayasinta, E. Anjarsari, and M. W. Ahdi, "Optimal Control for Smoking Epidemic Model," Proc. 7th Int. Conf. Res. Implementation, Educ. Math. Sci. (ICRIEMS 2020), vol. 528, no. Icriems 2020, pp. 323–328, 2021, doi: 10.2991/assehr.k.210305.046.

N. Ilmayasinta and H. Purnawan, "Optimal Control in a Mathematical Model of Smoking," J. Math. Fundam. Sci., vol. 53, no. 3, pp. 380–394, 2021, doi: 10.5614/j.math.fund.sci.2021.53.3.4.

N. Ilmayasinta, P. A. Riyantoko, N. Q. Nawafilah, Masruroh, R. Febriyanti, and H. Rahayu, "Mathematical Modeling of Covid-19 Transmission in Jakarta with Optimal Control Strategy," Int. J. Electr. Eng. Informatics, vol. 15, no. 1, pp. 106–118, 2023, doi: 10.15676/ijeei.2023.15.1.7.

Mardlijah, N. Ilmayasinta, and E. Arif Irhami, "Optimal control for extraction lipid model of microalgae Chlorella Vulgaris using PMP method," J. Phys. Conf. Ser., vol. 1218, no. 1, 2019, doi: 10.1088/1742-6596/1218/1/012043.

N. Ilmayasinta, A. R. Soemarsono, and E. N. R. Aishwaray, "Model Matematika Penyebaran Virus Nipah (NiV) dengan Kontrol Optimal Menggunakan Metode Pontryagin Maximum Principle (PMP)," J. Ilm. Mat. dan Pendidik. Mat., vol. 14, no. 1, pp. 95–108, 2022, doi: 10.20884/1.jmp.2022.14.1.5739.

N. Ilmayasinta and Asmianto, "Numerical Simulation of Covid-19 Mathematical Modelling with Optimal Control in Indonesia," in Proceedings of the 12th International Conference on Green Technology (ICGT 2022), 2023, pp. 3–12, doi: 10.2991/978-94-6463-148-7_2.

J. Jumbo, D. O. Obaseki, and P. O. Ikuabe, "Tuberculosis and gender parity in a TB Referral Centre, South–South Nigeria," Greener Journal of Medical Sciences, vol. 3, no. 7, pp. 270–275, Sep. 2013, doi: 10.15580/GJMS.2013.7.082613801.

WHO Geneva and IUATLD Paris, "Guidelines for surveillance of drug resistance in tuberculosis," International Journal of Tuberculosis and Lung Disease, vol. 2, no. 1, pp. 72–89, Jan. 1998. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/9562116/.

C. Connell McCluskey, "Lyapunov functions for tuberculosis models with fast and slow progression," Mathematical Biosciences and Engineering, vol. 3, no. 4, pp. 603–614, Oct. 2006, doi: 10.3934/mbe.2006.3.603.

S. Moghadas and A. Gumel, "Analysis of a model for transmission dynamics of TB," Canadian Journal of Applied Mathematics, vol. 10, pp. 411–427, 2002.

S. Bowong, J. J. Tewa, and J. C. Kamgang, "Stability analysis of the transmission dynamics of tuberculosis models," World Journal of Modelling and Simulation, vol. 7, no. 2, pp. 83–100, 2011.

S. M. Blower, P. M. Small, and P. C. Hopewell, "Control strategies for tuberculosis epidemics: new models for old problems," Science, vol. 273, no. 5274, pp. 497–500, Jul. 1996, doi: 10.1126/science.273.5274.497.

S. M. Blower, T. Porco, and T. Lietman, "Tuberculosis: The evolution of antibiotic resistance and the design of epidemic control strategies," in Mathematical Models in Medical and Health Sciences, Vanderbilt University Press, 1998.

C. Castillo-Chavez and Z. Feng, "To treat or not to treat: the case of tuberculosis," J. Math. Biol., vol. 35, no. 6, pp. 629–656, Jun. 1997, doi: 10.1007/s002850050069.

P. Kumar, V. S. Erturk, M. Murillo-Arcila, and V. Govindaraj, "A new form of L1-predictor-corrector scheme to solve multiple delay-type fractional order systems with the example of a neural network model," Fractals, vol. 31, 2023, doi: 10.1142/S0218348X23400430.

P. Kumar, V. Govindaraj, V. S. Erturk, and M. H. Abdellattif, "A study on the dynamics of alkali–silica chemical reaction by using Caputo fractional derivative," Pramana - J. Phys., vol. 96, no. 3, p. 128, Jun. 2022, doi: 10.1007/s12043-022-02359-2.

Q. Yang, D. Chen, T. Zhao, and others, "Fractional Calculus in Image Processing: A Review," Fract. Calc. Appl. Anal., vol. 19, pp. 1222–1249, 2016, doi: 10.1515/fca-2016-0063.

V. S. Erturk, A. K. Alomari, P. Kumar, and M. Murillo-Arcila, "Analytic Solution for the Strongly Nonlinear Multi-Order Fractional Version of a BVP Occurring in Chemical Reactor Theory," Discrete Dyn. Nat. Soc., 2022, doi: 10.1155/2022/8655340.

V. S. Erturk, A. Ahmadkhanlu, P. Kumar, and V. Govindaraj, "Some novel mathematical analysis on a corneal shape model by using Caputo fractional derivative," Optik, vol. 261, p. 169086, 2022, doi: 10.1016/j.ijleo.2022.169086.

E. Viera-Martin, J. F. Gómez-Aguilar, J. E. Solís-Pérez, and J. Hernández-Pérez, "Artificial neural networks: a practical review of applications involving fractional calculus," Eur. Phys. J. Spec. Top., vol. 231, pp. 2059–2095, 2022, doi: 10.1140/epjs/s11734-022-00455-3.

A. Din, F. M. Khan, Z. U. Khan, A. Yusuf, and T. Munir, "The mathematical study of climate change model under nonlocal fractional derivative," Partial Differential Equations in Applied Mathematics, vol. 5, p. 100204, 2022, doi: 10.1016/j.padiff.2021.100204.

P. Kumar, V. S. Erturk, A. Yusuf, and S. Kumar, "Fractional time-delay mathematical modeling of Oncolytic Virotherapy," Chaos, Solitons & Fractals, vol. 150, p. 111123, 2021, doi: 10.1016/j.chaos.2021.111123.

V. S. Erturk, E. Godwe, D. Baleanu, P. Kumar, J. Asad, and A. Jajarmi, "Novel Fractional-Order Lagrangian to Describe Motion of Beam on Nanowire," Acta Phys. Pol. A, vol. 140, p. 265, 2021, doi: 10.12693/APhysPolA.140.265.

E. Bonyah, C. W. Chukwu, M. L. Juga, and Fatmawati, "Modeling Fractional-Order Dynamics of Syphilis via Mittag-Leffler Law," AIMS Mathematics, vol. 6, no. 8, pp. 8367–8389, 2021, doi: 10.3934/math.2021485.

E. Bonyah, M. L. Juga, C. W. Chukwu, and Fatmawati, "A Fractional Order Dengue Fever Model in the Context of Protected Travelers," Alexandria Engineering Journal, vol. 61, no. 1, pp. 927–936, 2022, doi: 10.1016/j.aej.2021.04.070.

E. Okyere, F. T. Oduro, S. K. Amponsah, I. K. Dontwi, and N. K. Frempong, "Fractional Order Malaria Model With Temporary Immunity," arXiv preprint, 2016, doi: 10.48550/arXiv.1603.06416.

C. M. A. Pinto and J. A. Tenreiro Machado, "Fractional model for malaria transmission under control strategies," Comput. Math. Appl., vol. 66, no. 5, pp. 908–916, 2013, doi: 10.1016/j.camwa.2012.11.017.

E. Lusekelo, M. Helikumi, D. Kuznetsov, and S. Mushayabasa, "Dynamic modelling and optimal control analysis of a fractional order chikungunya disease model with temperature effects," Results Control Optim., vol. 10, p. 100206, 2023, doi: 10.1016/j.rico.2023.100206.

K. Shah, T. Abdeljawad, and H. Alrabaiah, "On coupled system of drug therapy via piecewise equations," Fractals, vol. 30, no. 8, p. 2240206, 2022, doi: 10.1142/S0218348X2240206X.

K. Shah and T. Abdeljawad, "Study of a mathematical model of COVID-19 outbreak using some advanced analysis," Waves in Random and Complex Media, pp. 1–18, 2022, doi: 10.1080/17455030.2022.2149890.

K. Shah, T. Abdeljawad, and R. Ud Din, "To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate," Physica A: Statistical Mechanics and its Applications, vol. 604, p. 127915, 2022, doi: 10.1016/j.physa.2022.127915.

K. Shah, T. Abdeljawad, and A. Ali, "Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative," Chaos, Solitons & Fractals, vol. 161, p. 112356, 2022, doi: 10.1016/j.chaos.2022.112356.

Y. Mahatekar, P. S. Scindia, and P. Kumar, "A new numerical method to solve fractional differential equations in terms of Caputo-Fabrizio derivatives," Physica Scripta, vol. 98, no. 2, p. 024001, 2023, doi: 10.1088/1402-4896/acaf1a.

D. Mahardika and S. Kartika, "Dynamic System of Tuberculosis Model Using Optimal Control in Semarang City Indonesia," BAREKENG J. Ilmu Mat. dan Terap., vol. 18, no. 1, pp. 43–52, 2024, doi: 10.30598/barekengvol18iss1pp0029-0042.




DOI: https://doi.org/10.37905/jjom.v7i1.30663



Copyright (c) 2025 Nur Ilmayasinta, Prismahardi Aji Riyantoko, Annisa Rahmita Soemarsono, Ulifatur Rochmatin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: info.jjom@ung.ac.id.