Estimasi Premi Bruto Asuransi Kendaraan Bermotor Menggunakan Metode Panjer Recursion dan Fast Fourier Transform

Sintya Putri Nugrahainy, Azizah Azizah

Abstract


Insurance is an agreement between two parties, namely the insurance company as the insurer and the customer as the insured. In practice, an insurance product can have hundreds or even thousands of policy contracts. This condition requires the insurer to model the compound distribution of total aggregate loss, which involves repeated convolutions. However, applying convolution to a large number of policies becomes increasingly difficult and inefficient. Therefore, alternative methods are needed to optimize the calculation process. This study uses the Panjer Recursion and Fast Fourier Transform methods to approximate the aggregate loss distribution. The model applies the Zero-Truncated Negative Binomial distribution for claim frequency and the Burr distribution for claim severity. The results show that Panjer Recursion and Fast Fourier Transform yield the same values, resulting in identical probability distributions for all values of aggregate loss. The aggregate loss distribution is then used to estimate gross premium based on the pure premium principle and the expected value principle. The loading factors increase as the confidence level rises, with θ = 3.51 at the 95% confidence level and θ = 5.47 at the 99% confidence level, resulting in total gross premiums of IDR 109,510,000 and IDR 520,835,000, respectively. The choice of confidence level plays a strategic role for insurance companies in balancing risk protection with premium affordability.


Keywords


Panjer Recursion; Fast Fourier Transform; Gross Premium; Loading Factor

Full Text:

PDF

References


Z. A. Pangestu and L. Islamiyah, “Perlindungan Hukum Pemegang Polis Asuransi Berdasarkan Sistem Hukum Indonesia,” Jurnal Laboratorium Syariah dan Hukum, vol. 4, no. 6, 2023, doi: https://doi.org/10.15642/mal.v4i6.302.

R. K. Hastuti, “Kacau! Gagal Bayar 5 Asuransi Ini Bikin Nasabah Teriak,” CNBC Indonesia. Diakses: 4 Februari 2025. [Daring]. Tersedia pada: https://www.cnbcindonesia.com/market/20200816100319-17-180132/kacau-gagal-bayar-5-asuransi-ini-bikin-nasabah-teriak.

N. Sakinah and H. Ridhah, “Analisis Penyebab Penolakan Klaim Asuransi Kerugian Syariah oleh Perusahaan Asuransi,” Jurnal Ilmiah Manajemen, Bisnis dan Kewirausahaan, vol. 3, no. 2, pp. 295–306, Jun. 2023, doi: https://doi.org/10.55606/jurimbik.v3i2.524.

A. K. Mutaqin, K. Sa’diah, and A. History, “The determination of the aggregate loss distribution through the numerical inverse of the characteristic function using the trapezoidal quadrature rule,” Desimal: Jurnal Matematika, vol. 4, pp. 339–348, 2021, doi: https://doi.org/10.24042/djm.v4i3.9434.

P. Shevchenko, “Calculation of aggregate loss distributions,” The Journal of Operational Risk, vol. 5, no. 2, pp. 3–40, Jun. 2010, doi: https://doi.org/10.21314/jop.2010.077.

H. H. Panjer, “Operational Risk Modeling Analytics,” 2006.

R. Saefullah and R. A. Ibrahim, “Determining the Pure Premium at Jasa Raharja Insurance Company Purwakarta Branch using Fast Fourier Transform (FFT) through Estimated Aggregate Loss Distribution,” International Journal of Quantitative Research and Modeling, vol. 5, no. 4, pp. 354–359, 2024, doi: https://doi.org/10.46336/ijqrm.v5i4.815.

I. R. Hikmah and Y. Hikmah, “Analisis Tarif Premi dan Asumsi Loading pada Produk Asuransi Dwiguna Beasiswa,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 3, no. 1, pp. 56–64, Jun. 2020, doi: https://doi.org/10.14710/jfma.v3i1.7414.

S. Izbik et al., “Penentuan Tarif Premi pada Asuransi Kendaraan dengan Besar Klaim Berdistribusi Eksponensial dan Gamma,” Premium Insurance Business Journal, vol. 10, no. 1, 2023, doi: https://doi.org/10.35904/premium.v10i1.46.

Y.-K. Tse, Nonlife Actuarial Models Theory, Methods and Evolution. New York: Cambridge University Press, 2009.

M. Aslam, “Chi-square test under indeterminacy: an application using pulse count data,” BMC Medical Research Methodology, vol. 21, no. 1, Dec. 2021, doi: https://doi.org/10.1186/s12874-021-01400-z.

S. A. Klugman, H. H. Panjer, and G. E. Willmot, Loss Models, 4th ed. 2012.

G. G. Hamedani et al., “A New Right-Skewed One-Parameter Distribution with Mathematical Characterizations, Distributional Validation, and Actuarial Risk Analysis, with Applications,” Symmetry, vol. 15, no. 7, Jul. 2023, doi: https://doi.org/10.3390/sym15071297.

J. Li and J. Liu, “Claims Modelling with Three-Component Composite Models,” Risks, vol. 11, no. 11, Nov. 2023, doi: https://doi.org/10.3390/risks11110196.

A. Ade Ogunde and O. E. Adeniji, “Type II Topp-Leone Bur XII distribution: Properties and applications to failure time data,” Scientific African, Jul. 2022, doi: https://doi.org/10.1016/j.sciaf.2022.e01200.

A. R. Hakim, I. Fithriani, and M. Novita, “Properties of Burr distribution and its application to heavy-tailed survival time data,” in Journal of Physics: Conference Series, IOP Publishing, Jan. 2021, doi: https://doi.org/10.1088/1742-6596/1725/1/012016.

N. Z. Nabila, “Analisis Ukuran Risiko dari Kerugian Agregat Asuransi Kendaraan Bermotor Menggunakan Metode Rekursif Panjer,” Undergraduate Thesis, Universitas Negeri Malang, 2024.

S. Chen, Z. Wang, and M. Kelly, “Aggregate loss model with Poisson-Tweedie frequency,” Big Data and Information Analytics, vol. 6, no. 0, pp. 56–73, 2021, doi: https://doi.org/10.3934/bdia.2021005.

T. A. J. Putra, D. C. Lesmana, and I. G. P. Purnaba, “Penghitungan Premi Asuransi Kendaraan Bermotor Menggunakan Generalized Linear Models dengan Distribusi Tweedie,” Jambura Journal of Mathematics, vol. 3, no. 2, pp. 115–127, May 2021, doi: https://doi.org/10.34312/jjom.v3i2.10136.

M. Mauliddin, “Menghitung Premi Asuransi Kecelakaan Lalu Lintas yang Optimal Berdasarkan Besar Klaim dan Frekuensi Klaim,” LAMBDA: Jurnal Ilmiah Pendidikan MIPA dan Aplikasinya, vol. 4, no. 1, pp. 23–35, Apr. 2024, doi: https://doi.org/10.58218/lambda.v4i1.843.




DOI: https://doi.org/10.37905/jjom.v7i2.32280



Copyright (c) 2025 Sintya Putri Nugrahainy, Azizah Azizah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Mathematics has been indexed by

>>>More Indexing<<<


Creative Commons License

Jambura Journal of Mathematics (e-ISSN: 2656-1344) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. 


Editorial Office


Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango, Gorontalo, Indonesia
Email: [email protected].